

Number Theoretic Accelerated Learning of Physics-Informed Neural Networks

Takashi Matsubara (Hokkaido University) Takaharu Yaguchi (Kobe University)

Background

Partial Differential Equations (PDEs)

- appear in physical simulations,
 - such as weather forecasting and molecular dynamics simulations,
- Include the Navier-stokes equation and the nonlinear Schrodinger equation.
- are defined as $\mathcal{N}[u] = 0$
 - for a (possibly nonlinear) differential operator \mathcal{N} and an unknown function $u : \Omega \to \mathbb{R}$ on the domain $\Omega \subset \mathbb{R}^s$.
- have been solved by various numerical methods,
 - including finite difference methods, finite volume methods, and spectral methods.

Background

Physics-informed neural networks (PINNs)

- were proposed an alternative numerical method, potentially computationally efficient and generally applicable.
- train a neural network $\tilde{u}: \Omega \to \mathbb{R}$ to represent the solution u.

Namely, PINNs

minimize the physics-informed loss

$$\frac{1}{N}\sum_{j=0}^{N-1} \left\| \mathcal{N}[\tilde{u}](\boldsymbol{x}_j) \right\|^2$$

at a finite set of collocation points, $\{x_j\}_j$.

• encourage the output \tilde{u} to satisfy the PDE $\mathcal{N}[\tilde{u}](\mathbf{x}_j) = 0$.

The solutions \boldsymbol{u} to PDEs are inherently infinite-dimensional.

Distances for the output \tilde{u} or the solution u need to be

defined by an integral over the domain $\boldsymbol{\Omega}$

In this regards,

- the physics-informed loss serves as a finite approximation to the squared 2-norm $|\mathcal{N}[\tilde{u}]|_2^2 = \int_{x \in \Omega} ||\mathcal{N}[\tilde{u}](x)||^2 dx$ on the function space $L^2(\Omega)$ for $\mathcal{N}[u] \in L^2(\Omega)$.
- the discretization errors should affect the training efficiency.
 - A smaller number N leads to an inaccurate approximation.
 - A larger number N increases the computational cost.

Related Work

Sampling methods include

(Jin et al. 2021; Krishnapriyan et al. 2022)

- uniformly random sampling (i.e., the Monte Carlo method)
- uniformly spaced sampling (Wang, Teng, and Perdikaris 2021; Wang, Yu, and Perdikaris 2022).
- Latin hypercube sampling (LHS) (Raissi, Perdikaris, and Karniadakis, 2019; Zeng et al. ,2023)
- Sobol sequence (a quasi-Monte Carlo method.)

(Lye, Mishra, and Ray 2020; Longo et al. 2021; Mishra and Molinaro. 2021).

Preliminary

- The domain $\Omega = [0,1]^s$
- A set of collocation points $L^* = \{x_j \mid j = 0, ..., N 1\}$
- Physics-informed loss and its variants

$$\frac{1}{N}\sum_{j=0}^{N-1}\mathcal{P}[\tilde{u}](\boldsymbol{x}_j) = \frac{1}{N}\sum_{\boldsymbol{x}\in L^*}\mathcal{P}[\tilde{u}](\boldsymbol{x}),$$
(1)

- where $\mathcal{P}[\tilde{u}](\mathbf{x}) = \|\mathcal{N}[\tilde{u}](\mathbf{x})\|^2$ for the original PINNs, and $\mathcal{P}[\tilde{u}](\mathbf{x}) = D(\mathbf{x})\mathcal{N}[\tilde{u}](\mathbf{x})$ for CPINNs (Zeng et al. 2023).
- The integral loss

$$\int_{\boldsymbol{x}\in\Omega}\mathcal{P}[\tilde{\boldsymbol{u}}](\boldsymbol{x})\mathrm{d}\boldsymbol{x}$$
(2)

The practical minimization of (1) essentially minimizes the approximation of (2).

Theorem 1

- Suppose that the class of neural networks includes an ε_1 -approximator \tilde{u}_{opt} to the exact solution u^* to the PDE $\mathcal{N}[u] = 0$: $||u^* \tilde{u}_{opt}|| \le \varepsilon_1$.
- Suppose that (1) is an ε_2 -approximation of (2) for a neural nework \tilde{u} and for \tilde{u}_{opt} : $|(2) - (1)| < \varepsilon_2$ for $u = \tilde{u}$ and $u = \tilde{u}_{opt}$.
- Suppose also that there exist c_p > 0 and c_L > 0 such that c_p⁻¹ ||u v|| ≤ ||N[u] N[v]|| ≤ c_L ||u v||.
 Then, ||u^{*} ũ|| ≤ (1 + c_pc_L)ε₁ + c_p√(1) + ε₂.

network capacity discretization error

How to reduce the second term?

2025.2.22

We propose Good Lattice Training (GLT)

- We use a number theoretic numerical analysis to accelerate the training of PINNs.
- Suppose $\Omega = [0, 1]^s$, the loss $\mathcal{P}[\tilde{u}]$ be periodic on \mathbb{R}^s with a period of 1.

Definition 2

• A lattice L in \mathbb{R}^s is defined as a finite set of points in \mathbb{R}^s that is closed under addition and subtraction.

Then,

the set of collocation points is defined as

 $L^* = \{x_j \mid j = 0, ..., N - 1\} := \{the \ decimal \ part \ of \ x \mid x \in L\} \in [0, 1]^s.$

(Niederreiter 1992; Sloan and Joe 1994; Zaremba 1972)

• Suppose $\varepsilon(x) \coloneqq \mathcal{P}[\tilde{u}](x)$ is smooth enough, admitting the Fourier series expansion: $\varepsilon(x) \coloneqq \mathcal{P}[\tilde{u}](x) = \sum_{h} \hat{\varepsilon}(h) \exp(2\pi i h \cdot x)$

Then,

$$|(2) - (1)| = \left| \frac{1}{N} \sum_{j=0}^{N-1} \sum_{\boldsymbol{h} \in \mathbb{Z}^{S}, \boldsymbol{h} \neq 0} \hat{\varepsilon}(\boldsymbol{h}) \exp\left(2\pi \mathrm{i}\boldsymbol{h} \cdot \boldsymbol{x}_{j}\right) \right|$$
(3)

• because the Fourier mode of h = 0 is equal to the integral $\int_{[0,1]^s} \varepsilon(x) dx$.

Definition 3

• A dual lattice L^{\top} of a lattice L is defined as $L^{\top} \coloneqq {\mathbf{h} \in \mathbb{R}^{s} | {\mathbf{h} \cdot \mathbf{x} \in \mathbb{Z}, \forall \mathbf{x} \in L}}.$

Lemma 4

• For
$$h \in \mathbb{Z}^{S}$$
, it holds that $\frac{1}{N} \sum_{j=0}^{N-1} \exp(2\pi i h \cdot x) = 1$ if $h \in L^{T}$ and 0 otherwise

(Niederreiter 1992; Sloan and Joe 1994; Zaremba 1972)

Good Lattice Training (GLT)

- We restrict the lattice *L* to the form $\{x \mid x = \frac{j}{N}z \text{ for } j \in \mathbb{Z}\}$ for an integer vector *z*.
 - The set L^* of collocation points is $\{ the decimal part of \frac{j}{N} \mathbf{z} \mid j = 0, ..., N 1 \}$.

•
$$L^{\mathsf{T}} = \{ \boldsymbol{h} \mid \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N} \}.$$

- Then, (3) $\leq \sum_{\boldsymbol{h} \in \mathbb{Z}^{S}, \boldsymbol{h} \neq 0, \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N}} |\hat{\varepsilon}(\boldsymbol{h})|$
- To minimize |(2) (1)|, find an integer vector **h** that minimizes (4).
 - In this sense, this is a number theoretic problem.

(4)

Definition 5

The function space that is defined as

$$E_{\alpha} = \left\{ f : [0,1]^{s} \to \mathbb{R} \, \middle| \, \exists c, \left| \hat{f}(\boldsymbol{h}) \right| \leq \frac{c}{(\overline{h}_{1}\overline{h}_{2}\cdots\overline{h}_{s})^{\alpha}} \right\}$$

is called the Korobov space,

- where $\hat{f}(\boldsymbol{h})$ is the Fourier coefficients of f and $\bar{k} = \max(1, |\boldsymbol{k}|)$ for $k \in \mathbb{R}$.
- For example, if a function $f(x, y): \mathbb{R}^2 \to \mathbb{R}$ has continuous f_x, f_y, f_{xy} , then $f \in E_1$.

• Hence, if $\mathcal{P}[\tilde{u}]$ and the neural network belong to Koborov space,

$$(4) \leq \sum_{\boldsymbol{h} \in \mathbb{Z}^{S}, \boldsymbol{h} \neq 0, \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N}} \frac{c}{(\overline{h}_{1}\overline{h}_{2}\cdots\overline{h}_{S})^{\alpha}}$$

$$(5)$$

Theorem 6

• For integers $N \ge 2$ and $s \ge 2$, there exists a $z \in \mathbb{Z}^s$ such that

$$P_{\alpha}(\boldsymbol{z}, N) \leq \frac{(2 \log N)^{\alpha s}}{N^{\alpha}} + O\left(\frac{(\log N)^{\alpha s-1}}{N^{\alpha}}\right) \text{ for } P_{\alpha}(\boldsymbol{z}, N) = \frac{1}{(\overline{h}_{1}\overline{h}_{2}\cdots\overline{h}_{s})^{\alpha}}$$

- Values of z have been explored in the field of number theoretic numerical analysis.
 - Successive Fibonacci numbers are theoretically optimal for s = 2.
 - Numerical tables are available for s > 2. (Fang and Wang, 1994); Keng and Yuan, 1981))
 - Some algorithms find optimal values at the computational cost of $O(N^2)$.

Theorem 7 (main result)

- Suppose that the activation function of \tilde{u} and hence \tilde{u} itself are sufficiently smooth so that there exists an $\alpha > 0$ such that $\mathcal{P}[\tilde{u}] \in E_{\alpha}$.
- Then, for given integers $N \ge 2$ and $s \ge 2$, there exists an integer vector $z \in \mathbb{Z}^s$ such that $L^* = \{ the \ decimal \ part \ of \ \frac{j}{N} z \mid j = 0, ..., N - 1 \}$ is a "good lattice" in the sense that

$$\left|\int_{\boldsymbol{x}\in\Omega}\mathcal{P}[\tilde{\boldsymbol{u}}](\boldsymbol{x})\mathrm{d}\boldsymbol{x} - \frac{1}{N}\sum_{\boldsymbol{x}\in L^*}\mathcal{P}[\tilde{\boldsymbol{u}}](\boldsymbol{x})\right| = O\left(\frac{(\log N)^{\alpha s}}{N^{\alpha}}\right)$$
(6)

Comparison

• This rate is better than the of the Monte Carlo method, which is of $O(N^{-1/2})$ if $\alpha \ge 1$.

Comparison

Periodization & Randomization Tricks

Good Lattice Training (GLT)

suppose the periodicity and smoothness of the solutions and neural networks.

Periodization Trick

- ensures the periodicity
 - by folding the time coordinate

 \Rightarrow i.e., using \hat{t} satisfysing $t = 2\hat{t}$ if $\hat{t} < 0.5$ and $t = 2(1 - \hat{t})$ otherwise.

- by projecting the space coordinate to a unit circle in a 2D space for the periodic boundary condition.
- by multiplying x(1-x)

for the Dirichlet boundary condition u = 0 at $\partial \Omega$.

Periodization & Randomization Tricks

Good Lattice Training (GLT)

suppose the periodicity and smoothness of the solutions and neural networks.

Randomization Trick

•
$$L^* = \{ the \ decimal \ part \ of \ \frac{j}{N} \mathbf{z} + \mathbf{r} \mid j = 0, \dots, N-1 \}$$

• where r follows the uniform distribution over the unit cube $[0,1]^s$.

When using the stochastic gradient descent (SGD) algorithm, resampling the random numbers *r* at each training iteration prevents the neural network from overfitting and improves training efficiency.

Experiments

Experiments

- The Adam for 20,000 iterations
 - better than the L-BFGS-B method preceded by the Adam for 50,000 iterations.

Evaluation

• The relative error
$$\mathcal{L}(\tilde{u}, u) = \frac{\sqrt{\sum_{j=0}^{N-1} \|\tilde{u}(x_j) - u(x_j)\|^2}}{\sqrt{\sum_{j=0}^{N-1} \|u(x_j)\|^2}} \simeq \frac{|\tilde{u} - u|_2}{|u|_2}$$

Results: Discretization error

Std of (1) as an approximator to |(2)-(1)| because of $\mathbb{E}[(1)] = (2)$.

After training the PINNs on the 2D NLS equation

with N = 610 collocation points determined by LHS.

Results: Discretization error

Convergence rate

• This trend aligns with the theory: $O(N^{-1/2})$ for the uniformly random,

 $O(N^{-1/s})$ for the uniformly spaced, and $O\left(\frac{(\log N)^s}{N}\right)$ for the Sobol sequence.

Results: Discretization error

GLT

- demonstrates a further accelerated reduction as the number N increases.
- is comparable with Sobol sequence if $\alpha = 1$ and much better if $\alpha > 1$.
- does not require the hyperparameter adjustment depending on α .

Results: Relative Error

The relative error converges the fastest with GLT.

Theory: Recall

Theorem 1

- Suppose that the class of neural networks includes an ε_1 -approximator \tilde{u}_{opt} to the exact solution u^* to the PDE $\mathcal{N}[u] = 0$: $||u^* \tilde{u}_{opt}|| \le \varepsilon_1$.
- Suppose that (1) is an ε_2 -approximation of (2) for the approximated solution \tilde{u} and also for \tilde{u}_{opt} : $|(2) (1)| < \varepsilon_2$ for $u = u^*$ and $u = \tilde{u}_{opt}$.
- Suppose also that there exist $c_p > 0$ and $c_L > 0$ such that $c_p^{-1} ||u - v|| \le ||\mathcal{N}[u] - \mathcal{N}[v]||$.
- $\begin{array}{l|l} \hline \mbox{Then, } \|u^* \widetilde{u}\| &\leq \big(1 + c_p c_L\big) \varepsilon_1 \\ \mbox{network capacity} &+ c_p \sqrt{(1) + \varepsilon_2}. \\ \hline \mbox{discretization error} \end{array}$

The convergence is due to the network capacity.

2025.2.22

Results: Relative Error

x 2-7 speed up.

- The same errors with the smaller numbers of collocation points.
- The smaller errors with the same numbers of collocation points.

	# of points N^{\dagger}					relative error \mathcal{L}^{\ddagger}				
	NLS	KdV	AC	Pois	sson	NLS	KdV	AC	Poi	sson
				s = 2	s = 4				s = 2	s = 4
▲ uniformly random	>4,181	>4,181	4,181	>4,181	1,019	3.11	2.97	1.55	28.53	0.28
 uniformly spaced 	2,601	4,225	>4,225	>4,225	>4,096	2.15	3.28	1.95	5.16	1437.12
LHS	>4,181	4,181	4,181	4,181	701	2.75	3.06	1.25	246.29	0.24
Sobol	2,048	2,048	4,096	>4,096	1,024	2.05	2.52	1.22	14.74	1.22
• GLT (proposed)	987	987	1,597	610	307	1.22	2.19	0.93	0.76	0.15

Results: Visualization

Errors with the same number of colocation points.

Results: Parameter Identification

Errors in the parameter identification

Smaller errors with fewer collocation points.

Results: CPINNs

Fast convergence of the relative errors with fewer collocation points

x 2-4 speed up.

Conclusion

We propose good lattice training

- Number theoretic numerical analysis method accelerates the training of PINNs.
 - by reducing the number of collocation points to 1/7-1/2.
- Periodization and randomization tricks ensure the conditions required by the theory.
 - Without these tricks, the performance significantly degraded.
- GLT worked well also for PINNs variants (namely, CPINNs).

	relative error \mathcal{L}^{\ddagger}					
	NLS	KdV	AC			
▲ uniformly random	3.18	17.30	382.51			
 uniformly spaced 	1.98	16.08	94.33			
LHS	2.78	15.14	158.71			
 Sobol 	2.21	13.28	94.35			
• GLT	1.31	12.30	84.50			
• GLT (with tricks)	1.22	2.19	0.93			