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I Background

Partial Differential Equations (PDEs)
= appear in physical simulations,

¢ such as weather forecasting and molecular dynamics simulations,
= include the Navier-stokes equation and the nonlinear Schrodinger equation.
= are defined as N|u] =0

e for a (possibly nonlinear) differential operator

and an unknown function u : ) — R on the domain () c R®.

= have been solved by various numerical methods,

¢ including finite difference methods, finite volume methods, and spectral methods.

(Furihata and Matsuo 2010; Morton and Mayers 2005; Thomas 1995)
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I Background

Physics-informed neural networks (PINNs)

= were proposed an alternative numerical method,
potentially computationally efficient and generally applicable.
" train a neural network #i: ) = R to represent the solution wu.

Namely, PINNs

" minimize the physics-informed loss

o vl ()|

at a finite set of collocation points, {xj}j.

= encourage the output i to satisfy the PDE V' [#i](x;) = 0.

(Raissi, Perdikaris, and Karniadakis 2019)
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| Problem

The solutions u to PDEs are inherently infinite-dimensional.
= Distances for the output &t or the solution u need to be
defined by an integral over the domain (2

In this regards,
= the physics-informed loss serves as a finite approximation to the squared 2-norm
(N[ill5 = [ NNV [@] (01> dx
on the function space L?(Q) for N'[u] € L*(Q).
= the discretization errors should affect the training efficiency.
e A smaller number N leads to an inaccurate approximation.
¢ A larger number N increases the computational cost.

(Bihlo and Popovych 2022; Sharma and Shankar 2022)
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I Related Work

Sampllng methods include (Jin et al. 2021; Krishnapriyan et al. 2022)
= uniformly random sampling (i.e., the Monte Carlo method)
= uniformly Spaced sampling (Wang, Teng, and Perdikaris 2021; Wang, Yu, and Perdikaris 2022).

= [atin hypercu be sampling (LHS)(Raissi, Perdikaris, and Karniadakis, 2019; Zeng et al. ,2023)

= Sobol sequence (a quasi-Monte Carlo method.)
(Lye, Mishra, and Ray 2020; Longo et al. 2021; Mishra and Molinaro.2021).
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A more efficient way to sample collocation points?
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| Theory

Preliminary
* The domain Q = [0,1]°
" A set of collocation points L = {x; | j = 0,...,N — 1}
= Physics-informed loss and its variants
SIS PLal(%) = Beerr PlEIG0), (1)
e where P[ii](x) = || V[i@](x)]||? for the original PINNS,
and P[ii](x) = D(x)V'[ii](x) for CPINNs (Zeng et al. 2023).
" The integral loss

Joeq Pl (x)dx (2)
= The practical minimization of (1) essentially minimizes the approximation of (2).
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| Theory

Theorem 1

" Suppose that the class of neural networks includes an &;-approximator i, to the

exact solution u* to the PDE M|u] = 0: |

u" — ﬂopt” < &.

" Suppose that (1) is an &;-approximation of (2) for a neural nework @ and for i, :
1(2) — (D] < g foru=1tand u = fi,y,.

" Suppose also that there exist ¢, > 0and ¢, > 0
such that c;* [lu — v|| < [N [u] = N[v]l < cllu — vl

" Then, ||[u* — || < (1 + cch)el + cp\/(l) + &,.
network capacity discretization error

How to reduce the second term?
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| Good Lattice Training

We propose Good Lattice Training (GLT)
= We use a number theoretic numerical analysis to accelerate the training of PINNs.
= Suppose ) = [0,1]°%, the loss P[ii] be periodic on R® with a period of 1.

Definition 2

= A lattice L in R® is defined as a finite set of points in R®
that is closed under addition and subtraction.

Then,

= the set of collocation points is defined as
L"={x;|j=0,...,N— 1} := {the decimal part of x|x € L} € [0, 1]°.

(Niederreiter 1992; Sloan and Joe 1994; Zaremba 1972)
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| Good Lattice Training

= Suppose £(x) = P|ii](x) is smooth enough, admitting the Fourier series expansion:
e(x) == Pli](x) = Y, é(h)exp (2rih - x)
" Then,
1 «N— . .
12) = (D] = |~ 2V Lhezs nzo () exp (2mik - x;)| 3)
® because the Fourier mode of h = 0 is equal to the integral f[o 1 e(x)dx.

Definition 3
= A dual lattice L' of a lattice L is defined as L' := {h € RS|h- x € Z,Vx € L}.

Lemma 4
= For h € Z°, it holds that %29’;01 exp (2mih - x) = 1if h € LT and 0 otherwise

(Niederreiter 1992; Sloan and Joe 1994; Zaremba 1972)
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| Good Lattice Training

Good Lattice Training (GLT)

= We restrict the lattice L to the form {x | X ﬁz forj € Z} for an integer vector z.

e The set L* of collocation points is {the decimal part oféz ‘j =0,..., N — 1}.
eLT={h|h-z = 0 (mod N)}.
" Then, (3) < Xhezs h#0,hz = 0 (mod N} E(R)] (4)
" To minimize |(2) — (1)], find an integer vector h that minimizes (4).
® |n this sense, this is a number theoretic problem.

(Niederreiter 1992; Sloan and Joe 1994; Zaremba 1972)
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| Good Lattice Training

Definition 5

= The function space that is defined as

— N S f C
E, = {f 10,1]° - R‘ dc, f(h)| = (5152...55)06}

is called the Korobov space,
e where f (h) is the Fourier coefficients of f and k = max(1, |k|) fork € R.
e For example, if a function f(x,y): R* = R has continuous fy, f;,, fy, then f € E;.

(Niederreiter 1992; Sloan and Joe 1994; Zaremba 1972)
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| Good Lattice Training

" Hence, if P[1i] and the neural network belong to Koborov space,

C
(4) = ZhEZS,h:tO,h-z =0 (mod N)} (hihy-hg)@

Theorem 6
" Forintegers N = 2 and s = 2, there exists a z € Z° such that

(log N)as—l
N&

1
(hihz--he)®

(2log N)*S

P,(z,N) < a

+0( )forPa(z,N) =

= Values of z have been explored in the field of number theoretic numerical analysis.

e Successive Fibonacci numbers are theoretically optimal for s = 2.
e Numerical tables are available for s > 2. (Fang and Wang, 1994); Keng and Yuan, 1981))
e Some algorithms find optimal values at the computational cost of O (N?).
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| Good Lattice Training

Theorem 7 (main result)

= Suppose that the activation function of @i and hence 1 itself are sufficiently smooth so that
there exists an a > 0 such that P[ii] € E,,.

" Then, for given integers N > 2 and s = 2, there exists an integer vector z € Z°
such that L* = {the decimal part ofﬁz |j=0,...,N — 1} is a “good lattice”

in the sense that

o PLEI® A = 23,0, Pl ()| = 0 (L2222 ©

Comparison
= This rate is better than the of the Monte Carlo method, which is of O(N~1/2) if @ > 1.
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| Good Lattice Training

Comparison
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| Periodization & Randomization Tricks

Good Lattice Training (GLT)

= suppose the periodicity and smoothness of the solutions and neural networks.

Periodization Trick
= ensures the periodicity
¢ by folding the time coordinate
=i.e., using t satisfysing t = 2t ift < 0.5and t = 2(1 — t) otherwise.
® by projecting the space coordinate to a unit circle in a 2D space
for the periodic boundary condition.
® by multiplying x(1 — x)
for the Dirichlet boundary condition u = 0 at d().

2025.2.22
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| Periodization & Randomization Tricks

Good Lattice Training (GLT)

= suppose the periodicity and smoothness of the solutions and neural networks.

Randomization Trick

" " = {the decimal part 0f£z+ r|j=0,...,.N —1}
e where r follows the uniform distribution over the unit cube [0,1]°.
= When using the stochastic gradient descent (SGD) algorithm,

resampling the random numbers r at each training iteration
prevents the neural network from overfitting and improves training efficiency.

2025.2.22

16



I Experiments

Experiments
= The Adam for 20,000 iterations
¢ better than the L-BFGS-B method preceded by the Adam for 50,000 iterations.

Evaluation

Eae) P o
= The relative error L(1, 1) = Y= ~ [uul;

JEN ) ulz

2025.2.22
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I Results: Discretization error

Std of (1) as an approximator to |(2)—(1)| because of E[(1)] = (2).

= After training the PINNs on the 2D NLS equation
with N = 610 collocation points determined by LHS.

std of loss

uniformly random
uniformly spaced

LHS
Sobol
GLT (proposed)
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I Results: Discretization error

Convergence rate

= This trend aligns with the theory: O(N‘l/z) for the uniformly random,
(log N)°

O(N_l/s) for the uniformly spaced, and O ( ) for the Sobol sequence.

std of loss

uniformly random
uniformly spaced

LHS
Sobol
GLT (proposed)
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I Results: Discretization error

GLT

= demonstrates a further accelerated reduction as the number N increases.
= is comparable with Sobol sequence if &« = 1 and much better if a > 1.

= does not require the hyperparameter adjustment depending on a.

std of loss

uniformly random
uniformly spaced

LHS
Sobol
GLT (proposed)
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I Results: Relative Error

The relative error converges the fastest with GLT.
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I Theory: Recall

Theorem 1

" Suppose that the class of neural networks includes an &;-approximator i, to the

exact solution u* to the PDE M|u] = 0: |

= Suppose that (1) is an &,-approximation of (2) for the approximated solution & and

u* - ﬂopt” S 81.

also for tiyye: [(2) — (1)] < & foru =u” and u = i,y
" Suppose also that there exist ¢, > 0and ¢, > 0

such that ¢, [lu — v|| < ||V [u] = M [v]Il.
" Then, |[u* — T < (1 + cch)€1 + cp\/(l) + &,.

network capacity discretization error

The convergence is due to the network capacity.

2025.2.22
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I Results: Relative Error

X 2-7 speed up.

= The same errors with the smaller numbers of collocation points.

= The smaller errors with the same numbers of collocation points.

# of points N

relative error £¥

NLS KdV AC Poisson NLS KdV AC Poisson
s =2 s=4 s =2 s=4
A uniformly random >4,181 >4,181 4,181 >4,181 1,019 3.11 2.97 1.55 28.53 0.28
uniformly spaced 2,601 4,225 >4,225 >4,225 >4,096 2.15 3.28 1.95 5.16 1437.12
LHS >4.181 4,181 4,181 4,181 701 2.75 3.06 1.25 246.29 0.24
¢ Sobol 2,048 2,048 4,096 >4,096 1,024 2.05 2.52 1.22 14.74 1.22
e GLT (proposed) 987 987 1,597 610 307 1.22 2.19 0.93 0.76 0.15

2025.2.22
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I Results: Visualization

Errors with the same number of colocation points.

NLS (x 10?)
2
0
e —
—2
KdV (x10?) Poisson with s = 2 (x10%)
1 1
2 - -
AC (x107%) Poisson with s = 4 (x 10%)
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I Results: Parameter Identification

Errors in the parameter identification

= Smaller errors with fewer collocation points.
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relative error L

I Results: CPINNs

Fast convergence of the relative errors with fewer collocation points
= x 2-4 speed up.

N LHS GLT
1,597
2, 584
4,181
6,765

10, 946
17,711
20,000 ——

02 108 T,
# of iteration # of iteration
NLS Burgers
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I Conclusion

We propose good lattice training

= Number theoretic numerical analysis method accelerates the training of PINNs.

* by reducing the number of collocation points to 1/7-1/2.

= Periodization and randomization tricks ensure the conditions required by the theory.

e Without these tricks, the performance significantly degraded.

= GLT worked well also for PINNs variants (namely, CPINNSs).

2025.2.22

relative error £}

NLS KdV AC
A uniformly random  3.18 17.30 382.51
uniformly spaced 1.98 16.08 94.33
LHS 278 15.14 158.71
+ Sobol 221 13.28 94.35
e GLT 1.31 12.30 84.50
e GLT (with tricks) 1.22 2.19 0.93

27



	スライド 1: Number Theoretic Accelerated Learning of Physics-Informed Neural Networks
	スライド 2: Background
	スライド 3: Background
	スライド 4: Problem
	スライド 5: Related Work
	スライド 6: Theory
	スライド 7: Theory
	スライド 8: Good Lattice Training
	スライド 9: Good Lattice Training
	スライド 10: Good Lattice Training
	スライド 11: Good Lattice Training
	スライド 12: Good Lattice Training
	スライド 13: Good Lattice Training
	スライド 14: Good Lattice Training
	スライド 15: Periodization & Randomization Tricks
	スライド 16: Periodization & Randomization Tricks
	スライド 17: Experiments
	スライド 18: Results: Discretization error 
	スライド 19: Results: Discretization error 
	スライド 20: Results: Discretization error 
	スライド 21: Results: Relative Error
	スライド 22: Theory: Recall
	スライド 23: Results: Relative Error
	スライド 24: Results: Visualization
	スライド 25: Results: Parameter Identification
	スライド 26: Results: CPINNs
	スライド 27: Conclusion

