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Background
Partial Differential Equations (PDEs)

▪appear in physical simulations,

• such as weather forecasting and molecular dynamics simulations, 

▪include the Navier-stokes equation and the nonlinear Schrodinger equation.

▪are defined as 𝒩 𝑢 = 0

• for a (possibly nonlinear) differential operator 𝒩

and an unknown function 𝑢 ∶ Ω → ℝ on the domain Ω ⊂ ℝ𝑠.

▪have been solved by various numerical methods,

• including finite difference methods, finite volume methods, and spectral methods.
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Physics-informed neural networks (PINNs) 

▪were proposed an alternative numerical method,

potentially computationally efficient and generally applicable.

▪train a neural network 𝑢: Ω → ℝ to represent the solution 𝑢.

Namely, PINNs

▪minimize the physics-informed loss

1

𝑁
σ𝑗=0

𝑁−1 𝒩 𝑢 𝒙𝑗
2

  at a finite set of collocation points, 𝒙𝑗 𝑗
.

▪encourage the output 𝑢 to satisfy the PDE 𝒩 𝑢 (𝒙𝑗) = 0.

(Raissi, Perdikaris, and Karniadakis 2019)

Background
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Problem
The solutions 𝑢 to PDEs are inherently infinite-dimensional.

▪Distances for the output 𝑢 or the solution 𝑢 need to be

defined by an integral over the domain Ω

In this regards,

▪the physics-informed loss serves as a finite approximation to the squared 2-norm 

𝒩 𝑢 2
2 = 𝒙∈Ω

𝒩 𝑢 𝒙 2d𝒙

on the function space 𝐿2(Ω) for 𝒩 𝑢 ∈ 𝐿2 Ω .

▪the discretization errors should affect the training efficiency. 

• A smaller number 𝑁 leads to an inaccurate approximation.

• A larger number 𝑁 increases the computational cost.
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Related Work
Sampling methods include
▪uniformly random sampling (i.e., the Monte Carlo method)

▪uniformly spaced sampling

▪Latin hypercube sampling (LHS)

▪Sobol sequence (a quasi-Monte Carlo method.)

A more efficient way to sample collocation points?
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(Lye, Mishra, and Ray 2020; Longo et al. 2021; Mishra and Molinaro 2021).

(Jin et al. 2021; Krishnapriyan et al. 2022)

(Wang, Teng, and Perdikaris 2021; Wang, Yu, and Perdikaris 2022).

(Raissi, Perdikaris, and Karniadakis, 2019; Zeng et al. ,2023)



Theory
Preliminary

▪The domain Ω = 0,1 𝑠

▪A set of collocation points 𝐿∗ = {𝒙𝑗  | 𝑗 = 0, . . . , 𝑁 − 1}

▪Physics-informed loss and its variants 
1

𝑁
σ𝑗=0

𝑁−1 𝒫 𝑢 𝒙𝑗 =
1

𝑁
σ𝒙∈𝐿∗ 𝒫 𝑢 𝒙 ,                                             (1)

•where 𝒫 𝑢 𝒙 = 𝒩 𝑢 𝒙 2 for the original PINNs,

and 𝒫 𝑢 𝒙 = 𝐷(𝒙)𝒩 𝑢 𝒙   for CPINNs (Zeng et al. 2023).

▪The integral loss

𝒙∈Ω                                                         
𝒫 𝑢 𝒙 d𝒙                                                                   (2)

▪The practical minimization of (1) essentially minimizes the approximation of (2).

2025.2.22 6



Theory
Theorem 1

▪Suppose that the class of neural networks includes an 𝜀1-approximator 𝑢𝑜𝑝𝑡 to the 

exact solution 𝑢∗ to the PDE 𝒩[𝑢]  =  0: 𝑢∗ − 𝑢𝑜𝑝𝑡  ≤ 𝜀1.

▪Suppose that (1) is an 𝜀2-approximation of (2) for a neural nework 𝑢 and for 𝑢𝑜𝑝𝑡:

2 − 1 < 𝜀2 for 𝑢 = 𝑢 and 𝑢 = 𝑢𝑜𝑝𝑡.

▪Suppose also that there exist 𝑐𝑝 > 0 and 𝑐𝐿 > 0

such that 𝑐𝑝
−1 𝑢 − 𝑣 ≤ 𝒩 𝑢 − 𝒩 𝑣 ≤ 𝑐𝐿 𝑢 − 𝑣 .

▪Then, 𝑢∗ − 𝑢  ≤ 1 + 𝑐𝑝𝑐𝐿 𝜀1 + 𝑐𝑝 1 + 𝜀2.

How to reduce the second term?
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Good Lattice Training
We propose Good Lattice Training (GLT)

▪We use a number theoretic numerical analysis to accelerate the training of PINNs. 

▪Suppose Ω = 0, 1 𝑠,  the loss 𝒫 𝑢  be periodic on ℝ𝑠  with a period of 1.

Definition 2

▪A lattice 𝐿 in ℝ𝑠 is defined as a finite set of points in ℝ𝑠

that is closed under addition and subtraction.

Then,

▪the set of collocation points is defined as

𝐿∗ = {𝒙𝑗  | 𝑗 = 0, . . . , 𝑁 − 1} ∶=  {𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 𝒙|𝒙 ∈ 𝐿} ∈ 0, 1 𝑠.
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Good Lattice Training
▪Suppose 𝜀 𝒙 ≔ 𝒫 𝑢 𝒙  is smooth enough, admitting the Fourier series expansion:

                                       𝜀 𝒙 ≔ 𝒫 𝑢 𝒙 = σ𝒉 Ƹ𝜀 𝒉 exp 2𝜋i𝒉 ⋅ 𝒙

▪Then, 

2 − 1 =
1

𝑁
σ𝑗=0

𝑁−1 σ𝒉∈ℤ𝑠,𝒉≠0 Ƹ𝜀 𝒉 exp 2𝜋i𝒉 ⋅ 𝒙𝑗                           (3)

• because the Fourier mode of 𝒉 = 0 is equal to the integral 0,1 𝑠 𝜀(𝒙)d𝒙.

Definition 3

▪A dual lattice 𝐿⊤ of a lattice 𝐿 is defined as 𝐿⊤ ≔ {𝒉 ∈ ℝ𝑠|𝒉 · 𝒙 ∈ ℤ, ∀𝒙 ∈ 𝐿}.

Lemma 4

▪ For 𝒉 ∈ ℤ𝑠, it holds that 
1

𝑁
σ𝑗=0

𝑁−1 exp 2𝜋i𝒉 ⋅ 𝒙 = 1 if 𝒉 ∈ 𝐿⊤ and 0 otherwise
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Good Lattice Training
Good Lattice Training (GLT)

▪We restrict the lattice 𝐿 to the form 𝒙 𝒙 =
𝑗

𝑁
𝒛 for 𝑗 ∈ ℤ  for an integer vector 𝒛.

• The set 𝐿∗ of collocation points is 𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓
𝑗

𝑁
𝒛 𝑗 = 0, . . . , 𝑁 − 1 .

• 𝐿⊤ = 𝒉 𝒉 · 𝒛 ≡ 0 (mod 𝑁)}.

▪Then, (3) ≤ σ𝒉∈ℤ𝑠,𝒉≠0,𝒉·𝒛 ≡ 0 (mod 𝑁)} Ƹ𝜀 𝒉                                                                        (4)

▪To minimize |(2) − (1)|, find an integer vector 𝒉 that minimizes (4).

• In this sense, this is a number theoretic problem.
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Good Lattice Training
Definition 5

▪The function space that is defined as

                                    𝐸𝛼 = 𝑓: 0, 1 𝑠 → ℝ  ∃𝑐, መ𝑓(𝒉) ≤
𝑐

ഥℎ1ഥℎ2···ഥℎ𝑠
𝛼

is called the Korobov space,

•where መ𝑓(𝒉) is the Fourier coefficients of 𝑓 and ത𝑘  =  max(1, |𝑘|) for 𝑘 ∈ ℝ.

• For example, if a function 𝑓 𝑥, 𝑦 : ℝ2 → ℝ has continuous 𝑓𝑥 , 𝑓𝑦 , 𝑓𝑥𝑦, then 𝑓 ∈ 𝐸1.
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Good Lattice Training
▪Hence, if 𝒫[ 𝑢] and the neural network belong to Koborov space,

4 ≤ σ𝒉∈ℤ𝑠,𝒉≠0,𝒉·𝒛 ≡ 0 (mod 𝑁)}
𝑐

ഥℎ1ഥℎ2···ഥℎ𝑠
𝛼 (5)

Theorem 6

▪For integers 𝑁 ≥ 2 and 𝑠 ≥ 2, there exists a 𝒛 ∈ ℤ𝑠 such that

                     𝑃𝛼 𝒛, 𝑁 ≤
2 log 𝑁 𝛼𝑠

𝑁𝛼 + 𝑂
log 𝑁 𝛼𝑠−1

𝑁𝛼  for 𝑃𝛼 𝒛, 𝑁 =
1

ഥℎ1ഥℎ2···ഥℎ𝑠
𝛼

▪Values of 𝒛 have been explored in the field of number theoretic numerical analysis.

• Successive Fibonacci numbers are theoretically optimal for 𝑠 = 2.

• Numerical tables are available for 𝑠 > 2.

• Some algorithms find optimal values at the computational cost of 𝑂(𝑁2).
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Good Lattice Training
Theorem 7 (main result)

▪Suppose that the activation function of 𝑢 and hence 𝑢 itself are sufficiently smooth so that 

there exists an 𝛼 > 0 such that 𝒫[ 𝑢] ∈ 𝐸𝛼.

▪Then, for given integers 𝑁 ≥ 2 and 𝑠 ≥ 2, there exists an integer vector 𝒛 ∈ ℤ𝑠

such that 𝐿∗ = {𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓
𝑗

𝑁
𝒛 | 𝑗 = 0, . . . , 𝑁 − 1} is a “good lattice”

in the sense that


𝒙∈Ω

𝒫 𝑢 𝒙 d𝒙 −
1

𝑁
σ𝒙∈𝐿∗ 𝒫 𝑢 𝒙 = 𝑂

log 𝑁 𝛼𝑠

𝑁𝛼                                          (6)

Comparison

▪This rate is better than the of the Monte Carlo method, which is of 𝑂 𝑁−1/2  if 𝛼 ≥ 1.
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Good Lattice Training
Comparison
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Periodization & Randomization Tricks
Good Lattice Training (GLT)

▪suppose the periodicity and smoothness of the solutions and neural networks.

Periodization Trick

▪ensures the periodicity 

• by folding the time coordinate

⇨i.e., using Ƹ𝑡 satisfysing 𝑡 = 2 Ƹ𝑡 if Ƹ𝑡 < 0.5 and 𝑡 = 2(1 − Ƹ𝑡) otherwise.

• by projecting the space coordinate to a unit circle in a 2D space

for the periodic boundary condition.

• by multiplying 𝑥 1 − 𝑥

for the Dirichlet boundary condition 𝑢 = 0 at 𝜕Ω.

2025.2.22 15



Periodization & Randomization Tricks
Good Lattice Training (GLT)

▪suppose the periodicity and smoothness of the solutions and neural networks.

Randomization Trick

▪𝐿∗ = {𝑡ℎ𝑒 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓
𝑗

𝑁
𝒛 + 𝒓 | 𝑗 = 0, . . . , 𝑁 − 1}

•where 𝒓 follows the uniform distribution over the unit cube 0,1 𝑠.

▪When using the stochastic gradient descent (SGD) algorithm,

resampling the random numbers 𝒓 at each training iteration

prevents the neural network from overfitting and improves training efficiency.
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Experiments
Experiments

▪The Adam for 20,000 iterations

• better than the L-BFGS-B method preceded by the Adam for 50,000 iterations.

Evaluation

▪The relative error ℒ 𝑢, 𝑢 =
σ𝑗=0

𝑁−1 𝑢 𝒙𝑗 −𝑢 𝒙𝑗
2

σ𝑗=0
𝑁−1 𝑢 𝒙𝑗

2
≃

𝑢−𝑢 2

𝑢 2
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Results: Discretization error 
Std of (1) as an approximator to |(2)−(1)| because of 𝔼[(1)] = (2).

▪After training the PINNs on the 2D NLS equation

with 𝑁 = 610 collocation points determined by LHS.
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Results: Discretization error 
Convergence rate 

▪This trend aligns with the theory: 𝑂(𝑁−1/2) for the uniformly random, 

𝑂 𝑁−1/𝑠  for the uniformly spaced, and 𝑂
log 𝑁 𝑠

𝑁
 for the Sobol sequence.
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Results: Discretization error 
GLT

▪demonstrates a further accelerated reduction as the number 𝑁 increases.

▪is comparable with Sobol sequence if 𝛼 = 1 and much better if 𝛼 > 1.

▪does not require the hyperparameter adjustment depending on 𝛼.
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Results: Relative Error
The relative error converges the fastest with GLT.
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Theory: Recall
Theorem 1

▪Suppose that the class of neural networks includes an 𝜀1-approximator 𝑢𝑜𝑝𝑡 to the 

exact solution 𝑢∗ to the PDE 𝒩[𝑢]  =  0: 𝑢∗ − 𝑢𝑜𝑝𝑡  ≤ 𝜀1.

▪Suppose that (1) is an 𝜀2-approximation of (2) for the approximated solution 𝑢 and 

also for 𝑢𝑜𝑝𝑡: 2 − 1 < 𝜀2 for 𝑢 = 𝑢∗ and 𝑢 = 𝑢𝑜𝑝𝑡.

▪Suppose also that there exist 𝑐𝑝 > 0 and 𝑐𝐿 > 0

such that 𝑐𝑝
−1 𝑢 − 𝑣 ≤ 𝒩 𝑢 − 𝒩 𝑣 .

▪Then, 𝑢∗ − 𝑢  ≤ 1 + 𝑐𝑝𝑐𝐿 𝜀1 + 𝑐𝑝 1 + 𝜀2.

The convergence is due to the network capacity.
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Results: Relative Error
x 2-7 speed up.

▪The same errors with the smaller numbers of collocation points.

▪The smaller errors with the same numbers of collocation points.
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Results: Visualization
Errors with the same number of colocation points.
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Results: Parameter Identification
Errors in the parameter identification

▪Smaller errors with fewer collocation points.
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Results: CPINNs
Fast convergence of the relative errors with fewer collocation points

▪x 2-4 speed up.
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Conclusion
We propose good lattice training

▪Number theoretic numerical analysis method accelerates the training of PINNs.

• by reducing the number of collocation points to 1/7-1/2.

▪Periodization and randomization tricks ensure the conditions required by the theory.

•Without these tricks, the performance significantly degraded.

▪GLT worked well also for PINNs variants (namely, CPINNs).
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