Number Theoretic Accelerated Learning of Physics-Informed Neural Networks
Takashi Matsubara (Hokkaido University), Takaharu Yaguchi (Kobe University)

. " // AAAI-25

e Physics-informed neural networks (PINNs) solve partial differential Derivations e Theorem 6. For integers N > 2 and s = 2, there exists a z € Z> such
equations (PDESs) by training neural networks as basis functions. e Def. 2. Alattice L in RS is a finite set of points in RS closed under that P, (z, N) < (2 1015 N)®s L0 ((1ogg)“s—1) for P, (z, N) = — 1

e PINNs approximate infinite-dimensional PDE solutions with finite addition and subtraction. . o | - (mhz-hg®
#Th st ofcolocaton piis .1 = thedecmal partor e € 1. S0LTL TSR e e sevon non of e

o Minimiging discretiza_tion errors | by selecting suitable points is e Suppose £(x) := N[ii](x) is periodic and smooth enough, admitting N € E%. Then, 1?(/)r given integers N > 2 and s = 2, there exists an
essential for accelerating the learning process. the Fourier series expansion: e(x) = ¥, £(h) exp(2rmih - x), where i | | i

e Inspired by number theoretic methods for numerical analysis, we denotes the imaginary unit and h = (hy, h,, ..., h,) € Z5. integer vector z € Z° such that L* = {the decimal part of 7 z| j =

0,...,N — 1}is a “good lattice” in the sense that
~ - 2 | as
e NI~ 25, VG = 0 (SE27) (@

NCZ

Introduce good lattice training (GLT) and periodization tricks, which

1$yN-1 A :
o |2)—)|= |- ZNL S s 2mih - x;
ensure the conditions required by the theory. @)=I= [ 2j=0 Znezs nzo £(h) exp(2mih x])‘ (3)

e Def. 3. Adual lattice L" of LisL" :={h € R’ |h-x € Z,Vx € L}.

e Our experimental results demonstrate that GLT requires 2-7 times - This rate is much better than that of the uniformly random sampling
f | | ' Iting In | r computational cost, while A : SN
aecvxieerv?no (;Z?rzlogtig\?lentse’r;sf;atllngeI OWer COmpUdi Wil eLemma 4. For h € Z%, % 1o é(h) exp(2mih - x;) = {(1) (E)}tlheerl\l/v 12) (i.e., the Monte Carlo method), which is of 0(1/N1/2).
J P P | | e \We call the training method that minimizes (1) for a lattice L satisfying
SO [ . 7] e \We restrict the lattice L to the form {x‘x = éz forj € Z}. (6) the good lattice training (GLT).
g oo . . oo ‘ ST — R . . . _ _ _
IR L= thih-z =0 (mod N)} Periodization and Randomization Tricks
: * " *(3)= Xhezs h0,h-2=0 (mod my|E(R)] (4) e \We ensure the periodicity and boundary conditions as:
RN SR ] *Def. 5. The Korobov space isE, = {f: [01]° - R|3c, |f(h)| < 7 EC - )a}, - Given an initial condition, extend the lattice twice as much along the
uniformly random LHS v e time coordinate and fold it.

where f(h) is f’s Fourier coefficients and k = max(1, |k|) for k € R.
* If @ Is an integer, for a function f to be in E4, it is sufficient that f has

* Given a periodic boundary condition to the k-th axis, map the

Tee taet e, a1 taa by coordinate x; to a unit circle in two-dimensional space.
© oo ) .. .. ’ ® ’ 1 1 1 1 S N . . . . .
ST continuous partial derivatives 0T1572 5T [LO0=sqe=a(k=1,..,s). - Given a Dirichlet boundary condition u = 0 to the k-th axis, treat the
AR . : e If V]ii] belong to Korobov space, output u(..., xg,...) multiplied by x; (1 — x;) as the solution w.
IR Je ettt e et e A<, s c (5) e We randomly shift the collocation points at every training iteration, just
Sobol sequence proposed GLT proposed GLT (folded) = SREEREORZ=0 (MO N) (R, . he)® like data augmentation.
Background and Theory Results: Competitive Performance with Much Fewer Collocation Points
Definitions e Std of (1) as an approximator to |(2)—(1)| because of E[(1)] = (2). e Visualization of &1 and |u — 1i|.
e A PDE is expressed as N [u] = 0 for a (possibly nonlinear) differential std of Loss — » Ground truth u, and errors % — u for uniformly
operator V' and an unknown function u : Q@ — R on the domain Q c RS ‘ —+— uniformly random random, uniformly spaced, LHS, Sobol, and GLT.
e PINNSs train a neural network & by minimizing physics-informed loss, —— E:;gormly wpaces 2.5
LN @) =2 S e [ 11 () (1)  Sobo B by
N == J N—"J J —e— GLT (proposed)
e (1) evaluates how the neural network i satisfies the PDE N'[ii] = 0 at e 10t N NLS (x 10
a finite set of N collocation points x;, L. 1 1 2
. . . . . . . " 17 — — 17 2 2 Y 2 2
e However, the solutions u to PDEs are infinite-dimensional, and any * The relative error, Lu; ] = (Zxep lu — @17 (%))?/(Zxer U1 (0))?, of u. 0
distance involving @ or u needs to be defined by an integral over Q. L 10_52 Q ﬁ2 - -2
. . . E A 10~ “= KdV (x10°)
e (1) serves as a finite approximation to the squared 2-norm, : : \\ .
102
Nl = [, IV IZlOll2dx @) E I 1 1 0
on the function space L?(Q) for N[u] € L%(Q). 3 »
: : : _ . 10— 2
 Hence, the discretization errors should affect the training efficiency. 10~ e —r—rr : AC (x107)
102 10° N 102 10° N 1
_ _ NLS KdV AC
Error Estimation -e — 0
o | £ £ LA | 1
e For simplicity, PDEs on Q = |0, 1]° are considered. 10° - 1
r . . L 3
e Theorem 1. Lo-1 : Poisson with s = 2 (x107) 1
» Suppose that the class of neural networks used for PINNs includes 1077 . . ;
an e;-approximator i, to the exact solution u* to the PDE N'[u] = 0: 1077 . e
* ~ —4 —1
|u —_ qutl S 81. ."1.62 T ---1-63 1T -N 10 --;(.)2 TTT ..1.63 T .]V Poisson Wlth ¢ — 4 (X 103)
» Suppose that (1) is an s,-approximation to (2) for the approximated Poisson with 5 = 2 Poisson with s = 4 N
L ~ 1 e Competitive PINNSs
solution @ and for iyp.: | f[o’l]s]V“ [u](x) dx — =2y e Nl (xj)‘ < & # of points N1 elative error £ 00— 1 5z\g7 LHS GLT
foru =u and u = typt. NLS KdV AC Poisson NLS KdV  AC Poisson Q 2. 534
: 5101 S
- Suppose that there exist cp > 0 and ¢; > 0 such that s=2 s=4 s—=2 s—4 : é’ %
cp Hlu—vl < |INVN[u] = N[]|| < cllu—7v]. a uniformly random  >4,181  >4,181 4,181  >4,181 1,019 3.1 297 155 2853 0.28 §1o—2 10,946
uniformly spaced 2,601 4225  >4225  >4225 >409 215 328 1.95 516 1437.12 < 17,711
¥ e~ 1 ~ = LHS >4,181 4,181 4,181 4,181 701 275  3.06 125  246.29 0.24 ~ 20,000 ——
Then, Jlu” —all < (1 + cpcr)ey + CP\/ N ijEL*N [#](x;) + & # Sobol 2,048 2,048 4,096  >4096 1,024 205 252 122 1474 1.22 10
e Theorem 1 suggests that the final error is composed of the error &, e GLT (proposed) 987 987 1,597 610 307 122 219 093 0.76 0.15
depends on the network architecture and the discretization error ¢,. NLS
e This study investigates a training method that easily gives small ¢,. e The absolute error A8 of the parameter identification. 10°
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