
•Std of (1) as an approximator to |(2)−(1)| because of 𝔼[(1)] = (2).

•The relative error, ℒ 𝑢; 𝑢 = σ𝒙∈𝐿𝑒
𝑢 − 𝑢 2 𝒙

1

2/ σ𝒙∈𝐿𝑒
𝑢 2 𝒙

1

2, of 𝑢.

•The absolute error Δ𝜃 of the parameter identification.
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Summary

• Physics-informed neural networks (PINNs) solve partial differential 

equations (PDEs) by training neural networks as basis functions.

• PINNs approximate infinite-dimensional PDE solutions with finite 

collocation points.

• Minimizing discretization errors by selecting suitable points is 

essential for accelerating the learning process.

• Inspired by number theoretic methods for numerical analysis, we 

introduce good lattice training (GLT) and periodization tricks, which 

ensure the conditions required by the theory.

• Our experimental results demonstrate that GLT requires 2-7 times 

fewer collocation points, resulting in lower computational cost, while 

achieving competitive performance.

Method: Good Lattice Training

Derivations

•Def. 2. A lattice 𝐿 in ℝ𝑠 is a finite set of points in ℝ𝑠 closed under 

addition and subtraction.

•The set of collocation points is 𝐿∗ ≔ the decimal part of 𝒙 𝒙 ∈  𝐿 .

• Suppose 𝜀 𝒙 ≔ 𝒩 𝑢 (𝒙) is periodic and smooth enough, admitting 

the Fourier series expansion: 𝜀 𝒙 = σ𝒉 Ƹ𝜀 𝒉 exp(2𝜋i𝒉 ⋅ 𝒙), where i 

denotes the imaginary unit and 𝒉 = ℎ1, ℎ2, . . . , ℎ𝑠 ∈ ℤ𝑠.

• |(2)−(1)|=
1

𝑁
σ𝑗=0

𝑁−1 σ𝒉∈ℤ𝑠,𝒉≠0 Ƹ𝜀 𝒉 exp(2𝜋i𝒉 ⋅ 𝒙𝑗) (3)

• Def. 3. A dual lattice 𝐿⊤ of 𝐿 is 𝐿⊤ ≔ {𝒉 ∈ ℝ𝑠 |𝒉 · 𝒙 ∈ ℤ, ∀𝑥 ∈ 𝐿}.

•Lemma 4. For 𝒉 ∈ ℤ𝑠, 
1

𝑁
σ𝑗=0

𝑁−1 Ƹ𝜀 𝒉 exp(2𝜋i𝒉 ⋅ 𝒙𝑗) = ቊ
1 (𝒉 ∈ 𝑳^⊤)
0 (otherwise)

•We restrict the lattice 𝐿 to the form 𝒙 𝒙 =
𝑗

𝑁
𝒛 for 𝑗 ∈ ℤ .

• 𝐿⊤ = 𝒉 𝒉 ⋅ 𝒛 ≡ 0 (mod 𝑁)

•(3)≤ σ𝒉∈ℤ𝑠,𝒉≠0,𝒉⋅𝒛≡0 (mod 𝑁) Ƹ𝜀 𝒉                                                          (4)

•Def. 5. The Korobov space is 𝐸𝛼 = 𝑓: 0,1 𝑠 → ℝ ∃𝑐, መ𝑓 𝒉 ≤
𝑐

തℎ1 തℎ2…തℎ𝑠
𝛼 ,

where መ𝑓 𝒉  is 𝑓’s Fourier coefficients and ത𝑘 = max(1, |𝑘|) for 𝑘 ∈ ℝ.

• If 𝛼 is an integer, for a function 𝑓 to be in 𝐸𝛼, it is sufficient that 𝑓 has 

continuous partial derivatives 
𝜕𝑞1+𝑞2+···+𝑞𝑠

𝜕1
𝑞1𝜕2

𝑞2···𝜕𝑠
𝑞𝑠 𝑓, 0 ≤ 𝑞𝑘 ≤ 𝛼 (𝑘 = 1, … , 𝑠).

• If 𝒩 𝑢  belong to Korobov space,

                        (4) ≤ σ𝒉∈ℤ𝑠,𝒉≠0,𝒉⋅𝒛≡0 (mod 𝑁)
𝑐

തℎ1 തℎ2…തℎ𝑠
𝛼                           (5)

• Theorem 6. For integers 𝑁 ≥ 2 and 𝑠 ≥ 2, there exists a 𝒛 ∈ ℤ𝑠 such 

that 𝑃𝛼 𝒛, 𝑁 ≤
2 log 𝑁 𝛼𝑠

𝑁𝛼 + 𝑂
log 𝑁 𝛼𝑠−1

𝑁𝛼   for 𝑃𝛼 𝒛, 𝑁 =
1

തℎ1 തℎ2…തℎ𝑠
𝛼.

• Theorem 7. Suppose that the activation function of 𝑢 and hence 𝑢 

itself are sufficiently smooth so that there exists an 𝛼 > 0 such that 

𝒩[ 𝑢] ∈ 𝐸𝛼. Then, for given integers 𝑁 ≥ 2 and 𝑠 ≥ 2, there exists an 

integer vector 𝒛 ∈ ℤ𝑠 such that 𝐿∗ = {the decimal part of
𝑗

𝑁
𝒛| 𝑗 =

0, . . . , 𝑁 −  1} is a “good lattice” in the sense that 

𝒙∈Ω
𝒩 𝑢 𝒙 2d𝒙 −

1

𝑁
σ𝒙𝑗∈𝐿∗ 𝒩 𝑢 𝒙𝑗

2
= 𝑂

log 𝑁 𝛼𝑠

𝑁𝛼          (6)

• This rate is much better than that of the uniformly random sampling 

(i.e., the Monte Carlo method), which is of 𝑂 1/𝑁1/2 .

• We call the training method that minimizes (1) for a lattice L satisfying 

(6) the good lattice training (GLT).

Periodization and Randomization Tricks

•We ensure the periodicity and boundary conditions as:

• Given an initial condition, extend the lattice twice as much along the 

time coordinate and fold it.

• Given a periodic boundary condition to the 𝑘 -th axis, map the 

coordinate 𝑥𝑘 to a unit circle in two-dimensional space.

• Given a Dirichlet boundary condition 𝑢 = 0 to the 𝑘-th axis, treat the 

output 𝑢(. . . , 𝑥𝑘 , . . . ) multiplied by 𝑥𝑘(1 − 𝑥𝑘) as the solution 𝑢.

•We randomly shift the collocation points at every training iteration, just 

like data augmentation. 

Background and Theory

Definitions

• A PDE is expressed as 𝒩[𝑢] = 0 for a (possibly nonlinear) differential 

operator 𝒩 and an unknown function 𝑢 ∶ Ω → ℝ on the domain Ω ⊂ ℝ𝑠

• PINNs train a neural network 𝑢 by minimizing physics-informed loss,

1

𝑁
σ𝑗=0

𝑁−1 𝒩 𝑢 𝒙𝑗
2

=
1

𝑁
σ𝒙𝑗∈𝐿∗ 𝒩 𝑢 𝒙𝑗

2
.                (1)

• (1) evaluates how the neural network 𝑢 satisfies the PDE 𝒩[ 𝑢] = 0 at 

a finite set of 𝑁 collocation points 𝒙𝑗, 𝐿∗.

• However, the solutions 𝑢 to PDEs are infinite-dimensional, and any 

distance involving 𝑢 or 𝑢 needs to be defined by an integral over Ω.

• (1) serves as a finite approximation to the squared 2-norm,

𝒩 𝑢 2
2 = 𝒙∈Ω

𝒩 𝑢 𝒙 2d𝒙                             (2)

  on the function space 𝐿2(Ω) for 𝒩 𝑢 ∈ 𝐿2 Ω .

• Hence, the discretization errors should affect the training efficiency.

Error Estimation

• For simplicity,  PDEs on Ω = 0, 1 𝑠 are considered.

• Theorem 1.

• Suppose that the class of neural networks used for PINNs includes 

an 𝜀1-approximator 𝑢opt to the exact solution 𝑢∗ to the PDE 𝒩 𝑢 = 0: 

|𝑢∗ − 𝑢opt| ≤ 𝜀1.

• Suppose that (1) is an 𝜀2-approximation to (2) for the approximated 

solution 𝑢 and for 𝑢opt: 0,1 𝑠 𝒩 𝑢 𝒙 d𝒙 −
1

𝑁
σ𝒙𝒋∈𝐿∗ 𝒩 𝑢 𝒙𝑗 ≤ 𝜀2 

for 𝑢 = 𝑢 and 𝑢 = 𝑢opt.

• Suppose that there exist 𝑐P > 0 and 𝑐L > 0 such that

                     𝑐P
−1 𝑢 − 𝑣 ≤ 𝒩 𝑢 − 𝒩 𝑣 ≤ 𝑐L 𝑢 − 𝑣 .

• Then, 𝑢∗ − 𝑢 ≤ 1 + 𝑐P𝑐L 𝜀1 + 𝑐P
1

𝑁
σ𝒙𝑗∈𝐿∗ 𝒩 𝑢 𝒙𝑗 + 𝜀2

• Theorem 1 suggests that the final error is composed of the error 𝜀1 

depends on the network architecture and the discretization error 𝜀2.

• This study investigates a training method that easily gives small 𝜀2.

• Visualization of 𝑢 and 𝑢 − 𝑢 .

• Ground truth 𝑢, and errors 𝑢 − 𝑢 for uniformly 

random, uniformly spaced, LHS, Sobol, and GLT.

• Competitive PINNs
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