Number Theoretic Accelerated Learning of Physics-Informed Neural Networks Takashi Matsubara (Hokkaido University), Takaharu Yaguchi (Kobe University) **AAAI-25**

Summary

- Physics-informed neural networks (PINNs) solve partial differential equations (PDEs) by training neural networks as basis functions.
- PINNs approximate infinite-dimensional PDE solutions with finite collocation points.
- Minimizing discretization errors by selecting suitable points is essential for accelerating the learning process.
- Inspired by number theoretic methods for numerical analysis, we introduce good lattice training (GLT) and periodization tricks, which ensure the conditions required by the theory.
- Our experimental results demonstrate that GLT requires 2-7 times fewer collocation points, resulting in lower computational cost, while achieving competitive performance.

Derivations

- **Def. 2.** A lattice L in \mathbb{R}^s is a finite set of points in \mathbb{R}^s closed under addition and subtraction.
- The set of collocation points is $L^* \coloneqq \{$ the decimal part of $x \mid x \in L \}$.
- Suppose $\varepsilon(x) \coloneqq \mathcal{N}[\tilde{u}](x)$ is periodic and smooth enough, admitting the Fourier series expansion: $\varepsilon(\mathbf{x}) = \sum_{\mathbf{h}} \hat{\varepsilon}(\mathbf{h}) \exp(2\pi i \mathbf{h} \cdot \mathbf{x})$, where i denotes the imaginary unit and $h = (h_1, h_2, \dots, h_s) \in \mathbb{Z}^s$.
- $|(2)-(1)| = \left|\frac{1}{N}\sum_{j=0}^{N-1}\sum_{\boldsymbol{h}\in\mathbb{Z}^{S},\boldsymbol{h}\neq0}\hat{\varepsilon}(\boldsymbol{h})\exp(2\pi i\boldsymbol{h}\cdot\boldsymbol{x}_{j})\right|$ (3)• **Def. 3.** A dual lattice L^{\top} of L is $L^{\top} \coloneqq {\mathbf{h} \in \mathbb{R}^{s} | \mathbf{h} \cdot \mathbf{x} \in \mathbb{Z}, \forall \mathbf{x} \in L}.$

• Lemma 4. For $h \in \mathbb{Z}^s$, $\frac{1}{N} \sum_{j=0}^{N-1} \hat{\varepsilon}(h) \exp(2\pi i h \cdot x_j) = \begin{cases} 1 & (h \in L^{\wedge \top}) \\ 0 & (\text{otherwise}) \end{cases}$ • We restrict the lattice *L* to the form $\{x \mid x = \frac{j}{N}z \text{ for } j \in \mathbb{Z}\}$. • $L^{\top} = \{ \boldsymbol{h} | \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N} \}$

• (3) $\leq \sum_{\boldsymbol{h} \in \mathbb{Z}^{S}, \boldsymbol{h} \neq 0, \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N}} |\hat{\varepsilon}(\boldsymbol{h})|$

Method: Good Lattice Training

• **Theorem 6.** For integers $N \ge 2$ and $s \ge 2$, there exists a $z \in \mathbb{Z}^s$ such

that $P_{\alpha}(\mathbf{z}, N) \leq \frac{(2 \log N)^{\alpha s}}{N^{\alpha}} + O\left(\frac{(\log N)^{\alpha s-1}}{N^{\alpha}}\right)$ for $P_{\alpha}(\mathbf{z}, N) = \frac{1}{(\bar{h}_1 \bar{h}_2 \dots \bar{h}_s)^{\alpha}}$.

- **Theorem 7.** Suppose that the activation function of \tilde{u} and hence \tilde{u} itself are sufficiently smooth so that there exists an $\alpha > 0$ such that $\mathcal{N}[\tilde{u}] \in E^{\alpha}$. Then, for given integers $N \geq 2$ and $s \geq 2$, there exists an
- integer vector $z \in \mathbb{Z}^s$ such that $L^* = \{$ the decimal part of $\frac{J}{N} z | j =$ $0, \ldots, N - 1$ is a "good lattice" in the sense that
- $\left|\int_{\boldsymbol{x}\in\Omega} \|\mathcal{N}[\tilde{\boldsymbol{u}}](\boldsymbol{x})\|^2 \mathrm{d}\boldsymbol{x} \frac{1}{N} \sum_{\boldsymbol{x}_j \in L^*} \|\mathcal{N}[\tilde{\boldsymbol{u}}](\boldsymbol{x}_j)\|^2 \right| = O\left(\frac{(\log N)^{\alpha s}}{N^{\alpha}}\right)$ (6)

• This rate is much better than that of the uniformly random sampling (i.e., the Monte Carlo method), which is of $O(1/N^{1/2})$.

• We call the training method that minimizes (1) for a lattice L satisfying (6) the good lattice training (GLT).

Periodization and Randomization Tricks

• We ensure the periodicity and boundary conditions as:

Background and Theory

Definitions

- A PDE is expressed as $\mathcal{N}[u] = 0$ for a (possibly nonlinear) differential operator \mathcal{N} and an unknown function $u: \Omega \to \mathbb{R}$ on the domain $\Omega \subset \mathbb{R}^s$
- PINNs train a neural network \tilde{u} by minimizing physics-informed loss,

 $\frac{1}{N}\sum_{j=0}^{N-1} \left\| \mathcal{N}[\tilde{u}](\mathbf{x}_j) \right\|^2 = \frac{1}{N}\sum_{\mathbf{x}_j \in L^*} \left\| \mathcal{N}[\tilde{u}](\mathbf{x}_j) \right\|^2.$ (1)

(2)

 10^{-1}

- (1) evaluates how the neural network \tilde{u} satisfies the PDE $\mathcal{N}[\tilde{u}] = 0$ at a finite set of N collocation points x_i , L^* .
- However, the solutions u to PDEs are infinite-dimensional, and any distance involving \tilde{u} or u needs to be defined by an integral over Ω . • (1) serves as a finite approximation to the squared 2-norm,

 $|\mathcal{N}[\tilde{u}]|_2^2 = \int_{x \in \Omega} ||\mathcal{N}[\tilde{u}](x)||^2 \mathrm{d}x$

• **Def. 5.** The Korobov space is $E_{\alpha} = \left\{ f: [0,1]^s \to \mathbb{R} \middle| \exists c, \left| \widehat{f}(h) \right| \leq \frac{c}{(\overline{h}_1 \overline{h}_2 \dots \overline{h}_s)^{\alpha}} \right\},$ where $\hat{f}(h)$ is f's Fourier coefficients and $\overline{k} = \max(1, |k|)$ for $k \in \mathbb{R}$. • If α is an integer, for a function f to be in E^{α} , it is sufficient that f has continuous partial derivatives $\frac{\partial^{q_1+q_2+\dots+q_s}}{\partial_1^{q_1}\partial_2^{q_2}\dots\partial_s^{q_s}}f, 0 \le q_k \le \alpha \ (k = 1, \dots, s).$ • If $\mathcal{N}[\tilde{u}]$ belong to Korobov space, $(4) \leq \sum_{\boldsymbol{h} \in \mathbb{Z}^{S}, \boldsymbol{h} \neq 0, \boldsymbol{h} \cdot \boldsymbol{z} \equiv 0 \pmod{N} \frac{1}{(\bar{h}_{1} \bar{h}_{2} \dots \bar{h}_{s})^{\alpha}}$ (5)

- Given an initial condition, extend the lattice twice as much along the time coordinate and fold it.
- Given a periodic boundary condition to the k-th axis, map the coordinate x_k to a unit circle in two-dimensional space.
- Given a Dirichlet boundary condition u = 0 to the k-th axis, treat the output $u(\ldots, x_k, \ldots)$ multiplied by $x_k(1 - x_k)$ as the solution u.
- We randomly shift the collocation points at every training iteration, just like data augmentation.

Results: Competitive Performance with Much Fewer Collocation Points

(4)

• Std of (1) as an approximator to |(2)-(1)| because of $\mathbb{E}[(1)] = (2)$.

• The relative error, $\mathcal{L}[u; \tilde{u}] = \left(\sum_{x \in L_{\rho}} |u - \tilde{u}|^2(x)\right)^{\overline{2}} / \left(\sum_{x \in L_{\rho}} |\tilde{u}|^2(x)\right)^{\overline{2}}$, of u.

• Visualization of \tilde{u} and $|u - \tilde{u}|$.

• Ground truth u, and errors $\tilde{u} - u$ for uniformly random, uniformly spaced, LHS, Sobol, and GLT.

NLS ($\times 10^2$)

20.000

- on the function space $L^2(\Omega)$ for $\mathcal{N}[u] \in L^2(\Omega)$.
- Hence, the discretization errors should affect the training efficiency.

Error Estimation

- For simplicity, PDEs on $\Omega = [0, 1]^s$ are considered.
- Theorem 1.
- Suppose that the class of neural networks used for PINNs includes an ε_1 -approximator \tilde{u}_{opt} to the exact solution u^* to the PDE $\mathcal{N}[u] = 0$: $|u^* - \tilde{u}_{\text{opt}}| \leq \varepsilon_1.$
- Suppose that (1) is an ε_2 -approximation to (2) for the approximated solution \tilde{u} and for \tilde{u}_{opt} : $\left| \int_{[0,1]^s} \mathcal{N}[u](\mathbf{x}) \, \mathrm{d}\mathbf{x} - \frac{1}{N} \sum_{\mathbf{x}_i \in L^*} \mathcal{N}[u](\mathbf{x}_i) \right| \le \varepsilon_2$ for $u = \tilde{u}$ and $u = \tilde{u}_{opt}$.
- Suppose that there exist $c_{\rm P} > 0$ and $c_{\rm L} > 0$ such that $c_{\mathrm{P}}^{-1} \|u - v\| \le \|\mathcal{N}[u] - \mathcal{N}[v]\| \le c_{\mathrm{L}} \|u - v\|.$
- Then, $\|u^* \tilde{u}\| \le (1 + c_P c_L)\varepsilon_1 + c_P \sqrt{\frac{1}{N}\sum_{x_j \in L^*} \mathcal{N}[\tilde{u}](x_j) + \varepsilon_2}$
- Theorem 1 suggests that the final error is composed of the error ε_1 depends on the network architecture and the discretization error ε_2 . • This study investigates a training method that easily gives small ε_2 .

Reference [1] Raissi et al., Physics-informed neural networks, JCP, 2019.

	# of points N^{\dagger}					relative error \mathcal{L}^{\ddagger}				
	NLS KdV		AC	AC Pois		NLS	KdV	AC	Poisson	
				s = 2	s = 4				s = 2	s = 4
▲ uniformly random	>4,181	>4,181	4,181	>4,181	1,019	3.11	2.97	1.55	28.53	0.28
 uniformly spaced 	2,601	4,225	>4,225	>4,225	>4,096	2.15	3.28	1.95	5.16	1437.12
LHS	>4,181	4,181	4,181	4,181	701	2.75	3.06	1.25	246.29	0.24
Sobol	2,048	2,048	4,096	>4,096	1,024	2.05	2.52	1.22	14.74	1.22
• GLT (proposed)	987	987	1,597	610	307	1.22	2.19	0.93	0.76	0.15

• The absolute error $\Delta \theta$ of the parameter identification.

of iteration

 $\frac{10^{-2}}{10^{-2}}$

 10^{-}