FINDE: Neural Differential Equations for Finding and Preserving Invariant Quantities

Takashi Matsubara (Osaka University), Takaharu Yaguchi (Kobe University)

Deep Learning with Laws of Physics

Deep learning (DL) for dynamical systems.

- The need for computer simulation is ubiquitous.
- weather forecasting, drug discovery, vehicle design, etc.
- DL learns physical phenomena from observations, by learning the underlying differential equations like $\dot{x} = f(x)$.
- Physical systems often have first integrals (invariant quantities)
- energy, momentum, holonomic constraints, mass, etc.
- Incorporating first integrals into DL leads to a better accuracy.

No general method to preserve first integrals

• One method was proposed for each type of first integrals.

- HNN [2], LieConv [3], CHNN [4], HNN++ [5], etc.
- Difficult to determine the type of first integral before learning.

Contributions of Proposal

- Finding and preserving any types of first integrals from observations.
- Available with previously proposed methods for some first integrals.
- Preserving first integrals without numerical errors in simulations.

Reference

[1] Chen et al., NeurIPS, 2018.

- [3] Finzi el al., ICML, 2020.
- [2] Greydanus et al., NeurIPS, 2019.
- [5] Matsubara el al., NeurIPS, 2020.
- [4] Finzi el al., NeurIPS, 2020. [6] Hairer et al., Springer-Verlag, 2006.

2D two-body problem

- Found and preserved the linear momenta in x- and y-directions
- suggested by smaller errors of the center-of-mass x_c

• Found first integrals were linear momenta

confirmed by symbolic regression

	Training	g Data	Test Data		
Trial	V_1	V_2	V_1	V_2	
0	$v_{x1} + v_{x2}$	$v_{y1} + v_{y2}$	$v_{x1} + v_{x2} + \alpha$	$v_{y1} + v_{y2}$	
1	$v_{x1} + v_{x2}$	$v_{y1} + v_{y2}$	$v_{x1} + v_{x2}$	$v_{y1} + v_{y2}$	
2	$v_{y1} + v_{y2}$	$v_{x1} + v_{x2}$	$v_{y1} \! + \! v_{y2}$	$v_{x1} + v_{x2}$	
3	$v_{y1} + v_{y2}$	$v_{x1} + v_{x2}$	$v_{y1} + v_{y2}$	$v_{x1} + v_{x2}$	
4	$v_{x1} + v_{x2} - v_{y1} - v_{y2}$	$v_{x1}\!+\!v_{x2}\!+\!v_{y1}\!+\!v_{y2}$	$v_{x1} + v_{x2} - v_{y1} - v_{y2}$	$v_{x1}\!+\!v_{x2}\!+\!v_{y1}\!+\!v_{y2}$	

We removed biases and scale factors. $\alpha = 0.003(y_1 + y_2)(v_{x2} + x_1 + y_1(v_{x2} + y_1 + y_2) + 1.402).$

Neural Networks for Finding and Preserving First Integrals

What are first integrals?

- A quantity V(x) is a first integral of the system $\dot{x} = f(x)$ $\Leftrightarrow V(x)$ is constant for any solution x(t) (i.e., $\dot{V}(x(t)) = 0$)
- With first integrals V_1, \ldots, V_K , any solution x(t) is clamped to the submanifold $\mathcal{M}' = \{x \in \mathcal{M}: V_k(x(t)) = V_k(x(0)) \text{ for } k = 1, ..., K\}$
- The time-derivative \dot{x} is also clamped to the tangent space $T_x \mathcal{M}' = \{ w \in \mathbb{R}^N : \nabla V_k(x)^\top w = 0 \text{ for } k = 1, ..., K \}$

Numerical methods to preserve first integrals

- e.g., projection method [6]
- Given a state x_n , predict the next \hat{x}_{n+1} and project it onto \mathcal{M}' , that is, $\operatorname{argmin}_{x_{n+1}} ||x_{n+1} - \hat{x}_{n+1}||$ s.t. $V_k(x_{n+1}) = V_k(x_n)$
- Need for solving an iterative optimization problem at every step.
- Taking the limit as the time step $\Delta t \rightarrow 0$, we propose First-Integral preserving Neural Differential Equation (FINDE).

Ich FINDE dich!

- Learn the dynamics $\hat{f}(x)$ and first integrals $V = (V_1 \dots V_K)^{\top}$ jointly, by projecting the former onto $T_x \mathcal{M}'$ defined by the latter.
- The continuous-time FINDE (cFINDE) $\dot{x} = f(x)$ preserves first integrals V.
- Combined with numerical integrators, cFINDE $\dot{x} = f(x)$ no longer preserves first integrals V due to the temporal discretization errors.

Experiments and Results

KdV equation

• preserved the total mass for $K \ge 2$ and the energy for $K \ge 3$.

- worked the best with K = 5, suggesting all first integrals found.
- energy
- 2 holonomic constraints
- 2velocity constraints

Overcoming temporal discretization errors

- Base cFIN dFIN

• We propose the discrete-time FINDE (dFINDE).

• Instead of the ODE $\dot{x} = \hat{f}(x)$, the difference equation $\frac{x'-x}{\Delta t} = \widehat{\Phi}(x', x)$.

• Instead of the gradient $\nabla V(x)$, the discrete gradient $\overline{\nabla} V(x', x)$.

• Instead of $T_{\chi}\mathcal{M}'$, the discrete tangent space

 $T_{(x',x)}\mathcal{M}' = \{ w \in \mathbb{R}^N : \overline{\nabla}V_k(x',x)^\top w = 0 \text{ for } k = 1, \dots, K \}$

• Then, project the discrete-time dynamics $\widehat{\Phi}(x', x)$ onto $T_{(x', x)}\mathcal{M}'$.

• dFINDE $\frac{x'-x}{\Delta t} = \Phi(x', x)$ preserves the first integrals V in discrete time. • No temporal discretization errors.

• No need for solving an optimization problem at the training phase.

Circuit representation of FitzHugh-Nagumo model

• Kirchhoff's voltage and current laws produced two first integrals.

• Even in dissipative systems, FINDE found first integrals.

Better prediction accuracy

• Except for an unreasonably large number *K* of assumed first integrals. • dFINDE further improves the accuracy (the valid prediction time).

	Two-body	KdV equation	double pendulum	FitzHugh- Nagumo
e model	0.362	0.339	0.110	0.236
DE	0.450	0.730	0.585	0.437
IDE	0.475	0.780	0.591	0.455