
Motivation

Neural ODE [1]

• is a neural network that approximates an ordinary differential

equation (ODE) ሶ𝑥 = 𝑓(𝑥) via a numerical integration.

• can learn continuous-time dynamics such as physical systems.

• can learn probabilistic distributions by the change-of-variables.

Existing Methods and Their Difficulties:

• The adjoint method obtains a gradient by a numerical integration

backward in time without the backpropagation over time; it needs

a high computation cost to suppress numerical errors.

• The backpropagation algorithm over an integration consumes an

extremely large memory.

• This is true even after a checkpointing scheme divides an integra-

tion into several subparts.

Proposal: Symplectic Adjoint Method

• Using a symplectic integrator, the adjoint method obtains an exact

gradient (up to rounding errors) of a neural ODE.

• A new checkpointing scheme inside a numerical integrator

Theory: Adjoint Method Results

×𝑀𝑠𝐿𝑀: # of neural ODE components

𝐿: # of layers in a neural network

𝑁, ෩𝑁: # of steps in the forward/backward integrations

𝑠: # of function evaluations per step

Methods Checkpoints Backprop. Computation

Adjoint method 𝑀 𝑀 + 𝐿 𝑁 + 2෩𝑁

Backpropagation − 𝑀𝑁s𝐿 2𝑁

Checkpoint per component 𝑀 𝑁𝑠𝐿 3𝑁

Checkpoint per step (ACA) [2] 𝑀𝑁 𝑠𝐿 3𝑁

Symplectic adjoint method 𝑀𝑁 + 𝑠 𝐿 4𝑁

Memory for

Systems

• Main system ሶ𝑥 𝑡 = 𝑓 𝑥 𝑡 , 𝑡 , 𝑥 0 = 𝑥0

• Variational system ሶ𝛿 𝑡 =
𝜕𝑓

𝜕𝑥
𝑥 𝑡 ,𝑡 𝛿 𝑡 ,𝛿 0 = 𝐼, then 𝛿 𝑡 =

𝜕𝑥 𝑡

𝜕𝑥0
.

• Adjoint system ሶ𝜆 𝑡 = −
𝜕𝑓

𝜕𝑥
𝑥 𝑡 , 𝑡 𝑇𝜆 𝑡 , 𝜆 𝑇 =

𝜕ℒ

𝜕𝑥 𝑇

⊤

• For parameters 𝜃,
d

d𝑡

𝑥
𝜃

=
𝑓 𝑥 𝑡 , 𝑡

0
,
𝑥
𝜃

0 =
𝑥0
𝜃

Remarks in Continuous Time

• The bilinear quantity 𝜆𝑇𝛿 is preserved.

• 𝜆(𝑡) represents the gradient
𝜕ℒ

𝜕𝑥 𝑡

⊤
through a backward integration.

Proposal: Symplectic Adjoint Method

Discretized Systems

• The main system is discretized by a Runge-Kutta method

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛 σ𝑖=1
𝑠 𝑏𝑖𝑘𝑛,𝑖

𝑘𝑛,𝑖 ≔ 𝑓(𝑋𝑛,𝑖 , 𝑡𝑛 + 𝑐𝑖ℎ𝑛), 𝑋𝑛,𝑖 ≔ 𝑥𝑛 + ℎ𝑛 σ𝑗=1
𝑠 𝑎𝑖,𝑗𝑘𝑛,𝑗

• The variational system is discretized by the same method.

• The adjoint system is discretized by another Runge-Kutta method

𝜆𝑛+1 = 𝜆𝑛 + ℎ𝑛 σ𝑖=1
𝑠 𝐵𝑖𝑙𝑛,𝑖

𝑙𝑛,𝑖 ≔ −
𝜕𝑓 𝑋𝑛,𝑖,𝑡𝑛+𝐶𝑖ℎ𝑛

𝜕𝑋𝑛,𝑖

𝑇

Λ𝑛,𝑖, Λ𝑛,𝑖 ≔ 𝜆𝑛 + ℎ𝑛 σ𝑗=1
𝑠 𝐴𝑖,𝑗𝑙𝑛,𝑗

Theorem in Discrete Time [3]

• If 𝐵𝑖 = 𝑏𝑖 ≠ 0, 𝐶𝑖 = 𝑐𝑖 , 𝑏𝑖𝐴𝑖,𝑗 + 𝐵𝑗𝑎𝑗,𝑖 − 𝑏𝑖𝐵𝑗 = 0, 𝜆𝑇𝛿 is conserved in

discrete time, and the adjoint method obtains an exact gradient.

• The condition is for a paired of Runge-Kutta methods to be symplectic.

• In general, a symplectic integrator conserves the bilinear quantity

𝜆𝑇𝛿, associated with the symplectic structure.

Implementation with Nested Checkpointing Scheme

• Forward integration of the state 𝑥𝑛

• Backward integration of the adjoint variable 𝜆𝑛

Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory
Takashi Matsubara*, Yuto Miyatake*, Takaharu Yaguchi†

*Osaka University, †Kobe University

References
[1] Chen+. (2018). Neural Ordinary Differential Equations. In NeurIPS.

[2] Zhuang+. (2020). Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural

ODE. In ICML.

[3] Sanz-Serna, (2016). Symplectic Runge-Kutta schemes for adjoint equations, automatic

differentiation, optimal control, and more. SIAM Review.

[4] Grathwohl+ (2018). FFJORD: Free-form Continuous Dynamics for Scalable Reversible

Generative Models. In ICLR.

[5] Matsubara+. (2020). Deep Energy-Based Modeling of Discrete-Time Physics. In NeurIPS.

1. Integrate the state 𝑥𝑛 forward in time by a step from a check-

point while retaining each stage 𝑋𝑛,𝑖 as an internal checkpoint.

2. Integrate the adjoint variable 𝜆𝑛 backward in time by a step

while loading internal checkpoints 𝑋𝑛,𝑖, recomputing 𝑓, and

computing 𝜕𝑓/𝜕𝑋𝑛,𝑖.

1. while retaining each step 𝑥𝑛 as a checkpoint and discarding

the computation graph.

Results on FFJORD [4]

• Consumes the lowest memory in most cases.

• Works relatively fast in many cases.

• More robust to rounding errors.

• Memory consumption for checkpoints is negligible compared to

that for backprop when 𝑁 < 1000.

• Robust to tolerance

Results on Physical Systems [5]

• A similar tendency

Method NLL mem Time NLL mem time NLL mem time

adjoint method 10.59 170 0.74 -10.53 24 4.82 -0.31 8.1 6.33

backpropagation 10.54 4436 0.91 -9.53 4479 12 -0.24 1710.9 10.64

baseline scheme 10.54 4457 1.1 -9.53 1858 5.48 -0.24 515.2 4.37

ACA 10.57 306 0.77 -10.65 73 3.98 -0.31 29.5 5.08

proposed 10.49 95 0.84 -10.89 20 4.39 -0.31 9.2 5.73

Method NLL mem Time NLL mem time NLL mem time

adjoint method 16.49 40 4.19 -152.04 577 11.7 0.918 1086 10.12

backpropagation 17.03 5254 11.82 - - - - - -

baseline scheme 17.03 1102 4.40 - - - - - -

ACA 16.41 88 3.67 -151.27 757 6.97 0.919 4332 7.94

proposed 16.48 35 4.15 -151.17 283 8.07 0.917 1079 9.42

MINIBOONE GAS POWER

HEPMASS BSDS300 MNIST

Method NLL mem Time NLL mem time

adjoint method 1.61 93.7 276 5.58 93.7 942

backpropagation 1.61 693.9 105 4.68 3047.1 425

ACA 1.61 647.8 137 5.82 648.0 484

proposed 1.61 79.8 162 5.47 80.3 568

KdV equation Cahn-Hilliard system

