Symplectic Adjoint Method for Exact Gradient of Neural ODE with Minimal Memory

Motivation

Neural ODE [1]

- is a neural network that approximates an ordinary differential equation (ODE) $\dot{x} = f(x)$ via a numerical integration.
- can learn continuous-time dynamics such as physical systems.
- can learn probabilistic distributions by the change-of-variables.

Existing Methods and Their Difficulties:

- The adjoint method obtains a gradient by a numerical integration backward in time without the backpropagation over time; it needs a high computation cost to suppress numerical errors.
- The backpropagation algorithm over an integration consumes an extremely large memory.
- This is true even after a checkpointing scheme divides an integration into several subparts.

	Memo		
Methods	Checkpoints	Backprop.	Computation
Adjoint method	М	M + L	$N+2\widetilde{N}$
Backpropagation	—	MNsL	2 <i>N</i>
Checkpoint per component	М	NsL	3 <i>N</i>
Checkpoint per step (ACA) [2]	MN	sL	3 <i>N</i>
Symplectic adjoint method	MN + s	L	4N
<i>M</i> : # of neural ODE compon <i>L</i> : # of layers in a neural new <i>N</i> , \tilde{N} : # of steps in the forward, <i>s</i> : # of function evaluations	× MsL		

Proposal: Symplectic Adjoint Method

- Using a symplectic integrator, the adjoint method obtains an exact gradient (up to rounding errors) of a neural ODE.
- A new checkpointing scheme inside a numerical integrator

References

[1] Chen+. (2018). Neural Ordinary Differential Equations. In NeurIPS.

[2] Zhuang+. (2020). Adaptive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE. In ICML.

[3] Sanz-Serna, (2016). Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more. SIAM Review.

[4] Grathwohl+ (2018). FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models. In ICLR.

[5] Matsubara+. (2020). Deep Energy-Based Modeling of Discrete-Time Physics. In NeurIPS.

Systems

- Mair
- Vari
- Adjo
- For

Remarks in Continuous Time

- - Ar

Theorem in Discrete Time [3]

Implementation with Nested Checkpointing Scheme

- Backward integration of the adjoint variable λ_n
 - point while retaining each stage $X_{n,i}$ as an internal checkpoint. while loading internal checkpoints $X_{n,i}$, recomputing f, and computing $\partial f / \partial X_{n,i}$.
- 1. Integrate the state x_n forward in time by a step from a check-2. Integrate the adjoint variable λ_n backward in time by a step

Takashi Matsubara*, Yuto Miyatake*, Takaharu Yaguchi⁺

*Osaka University, [†]Kobe University

Theory: Adjoint Method

n system
$$\dot{x}(t) = f(x(t), t), x(0) = x_0$$

iational system $\dot{\delta}(t) = \frac{\partial f}{\partial x}(x(t), t)\delta(t), \delta(0) = I$, then $\delta(t) = \frac{\partial x(t)}{\partial x_0}$.
oint system $\dot{\lambda}(t) = -\frac{\partial f}{\partial x}(x(t), t)^T\lambda(t), \lambda(T) = \left(\frac{\partial \mathcal{L}}{\partial x(T)}\right)^T$
parameters $\theta, \frac{d}{dt} \begin{bmatrix} x \\ \theta \end{bmatrix} = \begin{bmatrix} f(x(t), t) \\ 0 \end{bmatrix}, \begin{bmatrix} x \\ \theta \end{bmatrix} (0) = \begin{bmatrix} x_0 \\ \theta \end{bmatrix}$

• The bilinear quantity $\lambda^T \delta$ is preserved.

• $\lambda(t)$ represents the gradient $\left(\frac{\partial \mathcal{L}}{\partial r(t)}\right)^{\dagger}$ through a backward integration.

Proposal: Symplectic Adjoint Method

Discretized Systems

• The main system is discretized by a Runge-Kutta method

 $x_{n+1} = x_n + h_n \sum_{i=1}^{s} b_i k_{n,i}$ $k_{n,i} \coloneqq f(X_{n,i}, t_n + c_i h_n), \ X_{n,i} \coloneqq x_n + h_n \sum_{i=1}^s a_{i,i} k_{n,i}$

• The variational system is discretized by the same method. • The adjoint system is discretized by another Runge-Kutta method

$$\lambda_{n+1} = \lambda_n + h_n \sum_{i=1}^{S} B_i l_{n,i}$$
$$l_{n,i} \coloneqq -\frac{\partial f(X_{n,i}, t_n + C_i h_n)^T}{\partial X_{n,i}} \Lambda_{n,i}, \quad \Lambda_{n,i} \coloneqq \lambda_n + h_n \sum_{j=1}^{S} A_{i,j} l_{n,j}$$

• If $B_i = b_i \neq 0$, $C_i = c_i$, $b_i A_{i,i} + B_i a_{j,i} - b_i B_j = 0$, $\lambda^T \delta$ is conserved in discrete time, and the adjoint method obtains an exact gradient. • The condition is for a paired of Runge-Kutta methods to be symplectic. • In general, a symplectic integrator conserves the bilinear quantity $\lambda^T \delta$, associated with the symplectic structure.

- Forward integration of the state x_n
 - 1. while retaining each step x_n as a checkpoint and discarding the computation graph.

Results

Results on FFJORD^[4]

- Works relatively fast in many cases.
- More robust to rounding errors.

	MINIBOONE			GAS			POWER		
Method	NLL	mem	Time	NLL	mem	time	NLL	mem	time
adjoint method	10.59	170	0.74	-10.53	24	4.82	-0.31	8.1	6.33
backpropagation	10.54	4436	0.91	-9.53	4479	12	-0.24	1710.9	10.64
baseline scheme	10.54	4457	1.1	-9.53	1858	5.48	-0.24	515.2	4.37
ACA	10.57	306	0.77	-10.65	73	3.98	-0.31	29.5	5.08
proposed	10.49	95	0.84	-10.89	20	4.39	-0.31	9.2	5.73

	HEPMASS			BSDS300			MNIST		
Method	NLL	mem	Time	NLL	mem	time	NLL	mem	time
adjoint method	16.49	40	4.19	-152.04	577	11.7	0.918	1086	10.12
backpropagation	17.03	5254	11.82	-	-	-	-	-	-
baseline scheme	17.03	1102	4.40	-	-	-	-	-	-
ACA	16.41	88	3.67	-151.27	757	6.97	0.919	4332	7.94
proposed	16.48	35	4.15	-151.17	283	8.07	0.917	1079	9.42

- that for backprop when N < 1000.
- Robust to tolerance

Results on Physical Systems [5]

• A similar tendency

Method	KdV equation NLL mem Time			Cahn-I NLL	ystem time	
adjoint method	1.61	93.7	276	5.58	93.7	942
backpropagation	1.61	693.9	105	4.68	3047.1	425
ACA	1.61	647.8	137	5.82	648.0	484
proposed	1.61	79.8	162	5.47	80.3	568

• Consumes the lowest memory in most cases.

• Memory consumption for checkpoints is negligible compared to