
Deep Energy-Based Modeling of Discrete-Time Physics

How Deep Learning Ensures the Laws of Physics? 

Goal: a deep neural network that

• approximates physical phenomena from observations.
• ensures the energy conservation and dissipation laws in discrete time.

Background:

• The Hamiltonian mechanics is expressed by an ordinary differential equation

(ODE) associated with a symplectic structure, which admits the energy

conservation law in continuous time [1].

• For computer simulations, the time is discretized and interpolated by a

numerical integrator; then, the energy conservation law is destroyed.

• Symplectic integrators preserve an approximated symplectic structure and

conserve a modified energy [2], not the original energy.

• Symplectic integrators are not applicable to dissipative systems.

• Systems expressed by partial differential equations (PDEs) have been out of

scope of most previous studies.

Proposal:

• generalizes the Hamiltonian mechanics to energy-based modeling.

• modeled in discrete time by the discrete gradient method, which ensures the

energetic property in discrete time.

Discrete calculus [3]

• ensures the energy conservation and dissipation laws in discrete time.

• for Δ𝑢 = 𝑢𝑛+1 − 𝑢𝑛 and Δ𝐻 = 𝐻(𝑢𝑛+1) − 𝐻(𝑢𝑛).

Method: Modeled in Discrete Time

Continuous-time system Discrete-time system

d𝑢/d𝑡 = 𝐺𝛻𝐻(𝑢) Δ𝑢/Δ𝑡 = ҧ𝐺 ത𝛻𝐻(𝑢𝑛+1, 𝑢𝑛)⋯ (∗)

Energetic property Discrete energetic property

d𝐻/d𝑡 = 𝛻𝐻 ⋅d𝑢/d𝑡 = 𝛻𝐻⊤𝐺𝛻𝐻 Δ𝐻/Δ𝑡 = ҧ𝛻𝐻 ⋅Δ𝑢/Δ𝑡 = ҧ𝛻𝐻⊤ ҧ𝐺 ҧ𝛻𝐻

Continuous calculus
differential d𝐻

gradient 𝛻𝐻

d𝐻(𝑢) = 𝛻𝐻(𝑢) ⋅ d𝑢

d𝐻 𝑎𝑥; 𝑢 = 𝑎d𝐻 𝑥; 𝑢

Automatic differentiation

𝛻(𝑓 ∘𝑔)(𝑢) = 𝐽𝑔 𝑢 ⊤𝛻𝑓(𝑔 𝑢 )

Discrete calculus

discrete differential തd𝐻

discrete gradient ത𝛻𝐻

Δ𝐻(𝑢𝑛+1, 𝑢𝑛) = ത𝛻𝐻(𝑢𝑛+1, 𝑢𝑛) ⋅ Δ𝑢
തd𝐻 𝑎𝑥; 𝑢, 𝑣 = 𝑎തd𝐻 𝑥; 𝑢, 𝑣

chain-rule

linearity

Automatic discrete differentiation

ҧ𝛻(𝑓∘𝑔)(𝑢,𝑣) = ҧ𝐽𝑔 𝑢,𝑣 ⊤ ҧ𝛻𝑓 𝑔 𝑢 ,𝑔 𝑣

linear

nonlinear

ҧ𝐽𝑔 = 𝑊

ҧ𝐽𝑔 𝑘𝑘
=

𝜎 𝑢 𝑘 −𝜎 𝑣 𝑘

𝑢(𝑘)−𝑣(𝑘)

𝐽𝑔 = 𝑊

𝐽𝑔 𝑘𝑘
=

d𝜎 𝑢 𝑘

d𝑢 𝑘

The unified form 𝑑𝑢/𝑑𝑡 = 𝐺𝛻𝐻 𝑢
• for the state 𝑢 and the system energy 𝐻.

• expresses most physical phenomena.

• exhibits the energetic property determined by the coefficient matrix 𝐺.

PDEs  𝑢 = (𝑢1, … , 𝑢𝑛)ODEs  𝑢 = (𝑞, 𝑝)

Hamiltonian mechanics

𝑆 = 0 𝐼
−𝐼 0

ex. molecular dynamics

astronomical system

Hamiltonian field theory

𝐷 =
1

2Δ𝑥

0 1
−1 0 1

⋯ −1

⋮ ⋱ ⋮

1
⋯

−1 0 1
−1 0

ex. nonlinear wave equation

shallow water wave

Landau free-energy theory

𝐷2 =
1

Δ𝑥2

−2 1
1 −2 1

⋯ 1

⋮ ⋱ ⋮

1
⋯

1 −2 1
1 −2

ex. phase separation

cracks

Mechanics with friction

𝑆 + 𝑅 = 0 𝐼
−𝐼 𝑟

, 𝑟𝑘 ≤ 0

ex. pendulum

real robots

Conservative systems

𝐺: skew-symmetric

d𝐻/d𝑡 = 𝛻𝐻⊤𝐺𝛻𝐻 = 0

Dissipative systems

𝐺: negative semidefinite

d𝐻/d𝑡 = 𝛻𝐻⊤𝐺𝛻𝐻 ≤ 0

Automatic discrete differentiation

• The discrete gradient is not unique, and existing ones are inapplicable.

• The new algorithm obtains the discrete gradient of a neural network.
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1

𝑣 𝑘1 𝑘2 𝐻(𝑣)

energy
𝐻(𝑢, 𝑢𝑥, … )

discrete energy
𝐻(𝑈)

differential equation
d𝑢/d𝑡 = 𝐺𝛻𝐻

difference equation
Δ𝑈/Δ𝑡 = 𝐺 ҧ𝛻𝐻numerical

integration

Existing: continuous
then discretized 

Proposal:
inherently discrete

physical phenomena
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continuous calculus discrete calculus

Ground truth

Continuous model

d𝑢/d𝑡 = 𝐺𝛻𝐻(𝑢)

Discrete model

Δ𝑢/Δ𝑡 = ҧ𝐺 ҧ𝛻𝐻(𝑢𝑛+1, 𝑢𝑛)

KdV equation

Cahn-Hilliard equation

Ground truth

Continuous model

d𝑢/d𝑡 = 𝐺𝛻𝐻(𝑢)

Discrete model

Δ𝑢/Δ𝑡 = ҧ𝐺 ҧ𝛻𝐻(𝑢𝑛+1, 𝑢𝑛)

time 𝑡

space 𝑥

time 𝑡

space 𝑥

Abstract: We propose a deep energy-based physical model that admits a specific differential geometric structure. From this structure, the

conservation or dissipation law of energy and the mass conservation law follow naturally. To ensure the energetic behavior in discrete

time, we also propose an automatic discrete differentiation algorithm that enables neural networks to employ the discrete gradient method.

At the training phase:

• The objective function is the error in the numerical scheme ∗ .

• Given two time steps 𝑢𝑛, 𝑢𝑛+1, a single back-propagation is enough.

Comparative methods:

• The continuous model is solved by a Runge-Kutta method, the Dormand-

Prince method with adaptive time-stepping [4], which divides a time step into

many substeps and requires a proportional computational cost.

• To ODE systems with the separable energy function, a symplectic integrator

(the leapfrog integrator) is applicable with two neural networks [2].

Results

Experiments

The discrete model conserves the learned energy within a range of the

rounding error, while the continuous model suffers from “energy drift”.

KdV equation 

(conservative)

Cahn-Hilliard equation

(dissipative)

Models energy 𝐻 state 𝑢 energy 𝐻 state 𝑢

Continuous model 3.01 0.34 4.89 0.80

Discrete model 1.60 0.25 0.34 0.07

PDE systems (MSEs in appropriate scales)
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Method: Energy-Based Modeling

A numerical integrator tends to accumulate a modeling error over substeps,

while the discrete model directly exhibits a discrete-time behavior.

conservative dissipative

Models mass-spring pendulum 2-body pendulum

Continuous model 1.74 16.55 81.84 3.44

Symplectic integrator 0.69 11.24 40.37 (9.64)

Discrete model 0.62 10.79 81.03 0.50

ODE systems [1] (MSEs of the energy 𝐻 in appropriate scales)

The symplectic integrator is specialized to a high-dimensional conservative

system thanks to the separability assumption. A discrete model with such

assumption is a future work.

state 𝑢 error  energy 𝐻

state 𝑢 error  energy 𝐻


