

Att-DARTS: Differentiable Neural Architecture Search for Attention

Kohei Nakai, Takashi Matsubara, Kuniaki Uehara

Kobe University, Japan

Background: Neural Architecture Search

- Deep learning has enabled us to solve various tasks with high performance.
- To achieve high performance, the design of neural networks (NNs) is important.
- Neural Architecture Search (NAS) aims to automate the designing process.

The Internationa

NEURAL NETWORK

IEEE Computational Intelligence

Background: Attention and CNN

- CNN can capture spatial and channel-wise *features* by repeatedly applying convolutions.
 - > Some of *the features* are useless or harmful to important features.
- Some papers report that inserting attentions to CNN improves its performance.
 - Squeeze-and-Excitation [J. Hu+, CVPR2018] etc.
- An attention is the mechanism that focuses on specific parts of the input.

> An attention helps CNN discard useless features.

Background: Search Space for CNN

- At the search stage, NAS identifies an operation for each CNN layer.
- Candidates include popular convolutions and poolings.
 - Depth-wise separable convolution [F. Chollet+, CVPR2017] and dilated convolution [F. Yu+, ICLR2016].

- This search space does **not include any attentions**.
- We propose NAS for CNN with attentions.

Related work: Attention for CNN

- There are two types of attentions for images.
 - 1. Channel attention discards some channels to focus on the remaining channels.
 - Squeeze-and-Excitation [J. Hu+, CVPR2018] etc.
 - 2. Spatial attention discards some spatial positions to focus on the remaining spatial positions.
- Some attentions are combinations of channel and spatial attentions.
 - BAM [J. Park+, BMVC2018], CBAM [S. WOO+, ECCV2018]

Related work: NAS for CNN

- The entire network is a chain-like structure of repeatedly stacked cells.
- Each cell is expressed as a directed acyclic graph (DAG).
 - Each node expresses an image feature, and each edge expresses an operation.

SPONSORS:

Related work: DARTS [H. Liu+, ICLR2019]

- Each candidate operation has a relative weight s.
- During the search stage, DARTS jointly learns relative weights *s* as well as weight parameters *w* (e.g., convolution kernels).
- After the search stage, DARTS chooses
 - an operation with the biggest relative weight s for each edge.
 - two edges with the two biggest relative weights *s* for each target node.

Proposed Method: Att-DARTS

• Att-DARTS searches for cells including attentions as well as operations.

Proposed Method: Att-DARTS

- Each candidate attention has a relative weight t.
- Att-DARTS learns relative weights t and chooses an attention with the biggest relative weight t for each edge.

Experiment

- We evaluated Att-DARTS using CIFAR-10, CIFAR-100, and ImageNet (ILSVRC2012).
- The experimental procedure was as follows:
 - 1. We initialized Att-DARTS using CIFAR-10 to obtain candidate cells.
 - 2. We built a CNN composed of the cells and trained it from scratch.
 - 3. We repeated 1. and 2. for four times with different random seeds and chose the best cells based on the best validation accuracy.
 - 4. We retrained the best cells from scratch using CIFAR-10, CIFAR-100, and ImageNet.

This allows us to check the transferability to CIFAR-100 and ImageNet.

10

The Internationa Neural Network

IEEE Computational Intelligence

Dataset for architecture search : CIFAR-10

Dataset for architecture evaluation: CIFAR-10 and CIFAR-100

Number of cells : 20

- Compared with DARTS, Att-DARTS reduced both the classification error and the number of parameters.
- Att-DARTS also reduced the classification error for CIFAR-100.

Architactura	Test E	Darame (M)	
Alchitecture	CIFAR-10	CIFAR-100	
DARTS + cutout	2.76 ± 0.09	16.69 ± 0.28	3.3
Att-DARTS + cutout	2.54 ± 0.10	16.54 ± 0.40	3.2

SPONSORS:

Dataset for architecture search : CIFAR-10

Dataset for architecture evaluation : ImageNet

Number of cells : 14

 Att-DARTS found a CNN using CIFAR-10 with lower classification error for not only CIFAR-10 but also CIFAR-100 and ImageNet.

• The best CNN found by Att-DARTS is transferable to CIFAR-100 and ImageNet.

	Architaatura	Test Error (%)					
Architecture	top-1	top-5	Params (IVI)				
	DARTS	26.7	8.7	4.7			
	Att-DARTS	26.0	8.5	4.6		12	
			SPONSORS:				
2(Computatio	D20 nal Intelligence		Advancing Technology	IEEE Computational Intelligence Society	E	The International Neural Network Society (INNS)	Evolution Program Society

Comparison with state-of-the-art architectures on CIFAR-10

	Architecture	Test Error (%)	Params (M)	Search Method		
	DenseNet-BC	3.46	25.6	manual		
	NASNet-A + cutout	2.65	3.3	RL		
	AmoebaNet-B + cutout	2.55 ± 0.05	2.8	evolution	These methods	
Att-DARTS's	Hierarchical Evolution	3.75 ± 0.12	15.7	evolution	-tend to take a	
approach to search	PNAS	3.41 ± 0.09	3.2	SMBO	longer time.	
attentions can be	ENAS + cutout	2.89	4.6	RL		
combined with	DARTS + cutout	2.76 ± 0.09	3.3	gradient		
gradient-based	SNAS (moderate) + cutout	2.85 ± 0.02	2.8	gradient	Att-DARTS achieve	
methods.	BayesNAS + cutout	2.81 ± 0.04	3.4	gradient	-the best among	
	PC-DARTS + cutout	2.57 ± 0.07	3.6	gradient	gradient methods.	
	Att-DARTS + cutout	2.54 ± 0.10	3.2	gradient	13	
		SPON	SORS:			
WCCI 20	020		Advancing Technology	IEEE Computational Intelligence	THE INTERNATIONAL NEURAL NETWORK SOCIETY (INNS)	

for Humanity

IEEE Computational Intelligence Society

Evolutionary Programming Society

- Only operations are arranged in cells by the conventional method, DARTS.
- An attention is inserted after each operation by Att-DARTS.

SPONSORS:

A -----

• **BAM** and **CBAM** are mainly chosen as attentions.

Related work: Attention for CNN (reshown)

- There are two types of attentions for images.
 - 1. Channel attention masks channels and enables CNN to focus on important channels.
 - Squeeze-and-Excitation [J. Hu+, CVPR2018] etc.
 - 2. Spatial attention masks spatial positions and enables CNN to focus on important spatial positions.
- Some attentions are combinations of channel and spatial attentions.
 - BAM [J. Park+, BMVC2018], CBAM [S. WOO+, ECCV2018]

SPONSORS:

- BAM and CBAM are mainly chosen as attentions.
- Combining channel and spatial attentions is promising.

- The skip connection is chosen as an operation the most frequently.
- Attentions are repeatedly applied without convolution operations.
 - From node c_{k-1} to node 3 via node 0 in the normal cell.
- Repeating attentions is promising.

IEEE Computational

Intelligence

Society

THE INTERNATIONAL NEURAL NETWORK

SOCIETY

(INNS)

FΡS

SPONSORS:

ㅋㅋㅋ

for Humanity

Advancing Technology

Conclusion

- We proposed Att-DARTS, a novel NAS method that searches over attentions as well as operations.
 - Att-DARTS thus automatically generates CNN with attentions.
- We applied Att-DARTS using CIFAR-10 for CNN discovery. Our results suggested that Att-DARTS found the CNN
 - that achieved **lower** classification error.
 - that had fewer number of parameters.
 - that was transferable from CIFAR-10 to CIFAR-100 and ImageNet, in other words, whose performance did not depend on the dataset used during the search stage.
- Regarding the cells found by Att-DARTS, we found
 - combining channel and spatial attentions is promising.
 - repeating attentions is promising.

19

The Internationa Neural Network

IEEE Computational Intelligence