A Human-Like Agent Based on a Hybrid of Reinforcement and Imitation Learning

2019-07-17

Background

Reinforcement Learning

Pros

High performance on the task

Cons

2019-07-18

• The agent's behavior is likely to be uncanny

- DeepMind's "Alpha Go" (2015) and "AlphaStar" (2019) beat the human experts in the "GO Game" and "Starcraft 2", respectively
- OpenAI's "Dactyl Project" uses RL methods to achieve object manipulation with a robot arm

Background

Imitation Learning

Data provided by an expert is used to training a mimicking agent in a **Supervised Learning** fashion

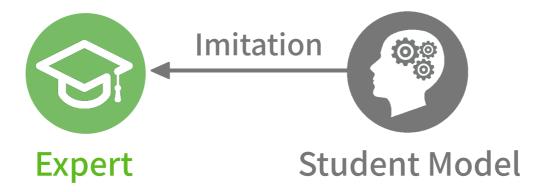
Pros

• With a human expert, exhibits a relatively human-like behavior.

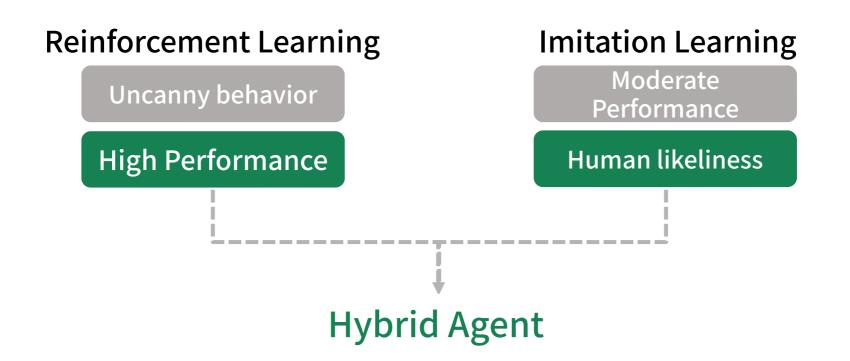
Cons

2019-07-18

The agent's performance is limited to the expert's



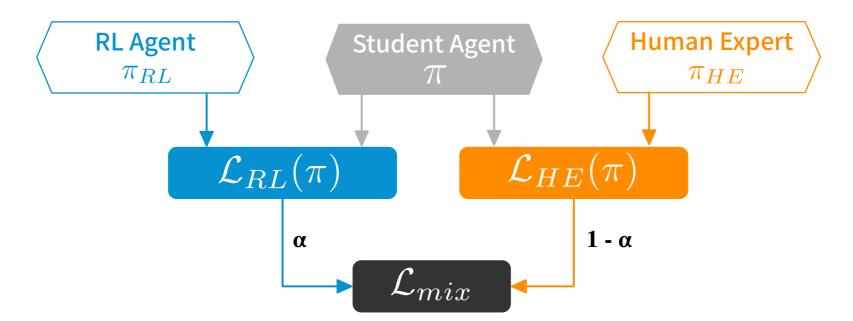
An agent which exhibits high performance while maintaining a human-like behavior (based on both Reinforcement and Imitation Learning)



2019-07-18

Proposed Method

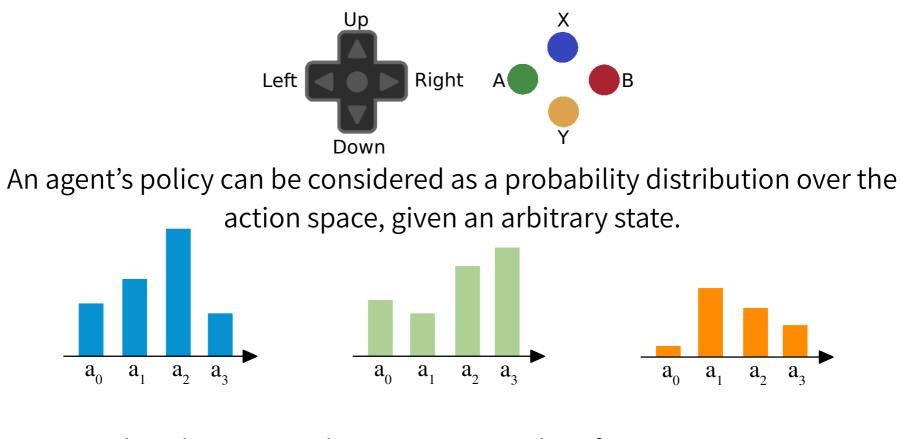
Hybrid Loss Function



$$\mathcal{L}_{mix}(\pi; \pi_{RL}, \pi_{HE}) = \alpha \underbrace{\mathcal{L}_{\pi_{RL}}(\pi)}_{\text{Loss w.r.t. the}} + (1 - \alpha) \underbrace{\mathcal{L}_{\pi_{HE}}(\pi)}_{\text{Loss w.r.t. the}} + \underbrace{(1 - \alpha) \underbrace{\mathcal{L}_{\pi_{HE}}(\pi)}_{\text{Loss w.r.t. the}}}_{\text{RL agent}} + \underbrace{(1 - \alpha) \underbrace{\mathcal{L}_{\pi_{HE}}(\pi)}_{\text{Loss w.r.t. the}}}_{\text{human expert}}$$

2019-07-18

Proposed Method / Discrete Action Space



Thus, leveraging the cross-entropy loss function, we get: $\mathcal{L}_{mix}(\cdot) = \alpha \mathbb{E}_s \left[-\sum_{a} \pi_{RL}^{(T)}(a|s) log \pi(a|s) \right] + (1-\alpha) \mathbb{E}_s \left[-\sum_{a} \pi_{RL}(a|s) log \pi(a|s) \right]$

2019-07-18

Proposed Method / Continuous Action Space

In the Continuous Action Space case:

Tight left turn: -1.0

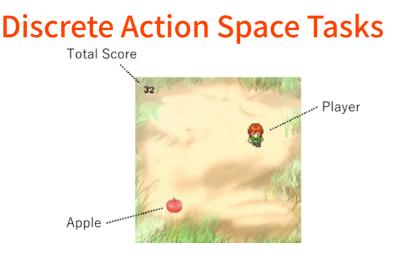
Neutral: 0.0

Moderate right turn: 0.3

- An agent's policy can be expressed as the marginal probability distribution over the state-action space.
- The difference between two policies can thus be measure using a discriminator function (as in Generative Adversarial Networks)]

Rewriting the hybrid function around an adversarial loss function thus gives:

$$\mathcal{L}_{mix}(\cdot) = \mathbb{E}_{\tau \sim \pi} \left[log(D_w(s, a)) \right] + \alpha \mathbb{E}_{\tau_{RL} \sim \pi_{RL}} \left[log(1 - D_w(s, a)) \right] + (1 - \alpha) \mathbb{E}_{\tau_{HE} \sim \pi_{HE}} \left[log(1 - D_w(s, a)) \right]$$



Apple game

Goal

Collect randomly spawning apples by moving the avatar.

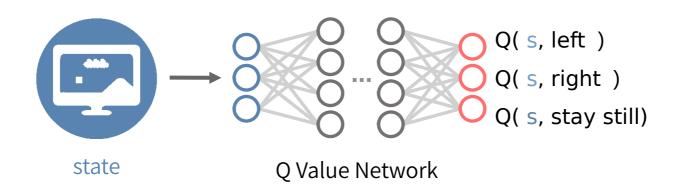
Gopher (Atari2600)

Goal

Filling back the holes being dug out by the gopher under the ground, thus keeping the latter from stealing the carrots.

2019-07-18

As the expert RL agent: Deep Q-Network (DQN) [Mnih et al., 2015]

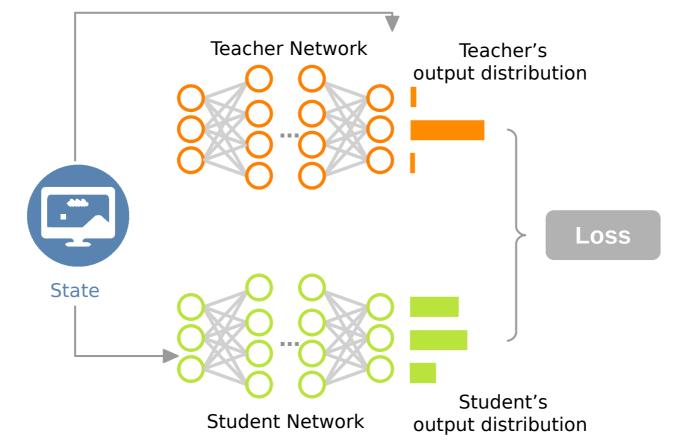


Selected Action

$$a = argmax_a Q(s, \cdot)$$

2019-07-18

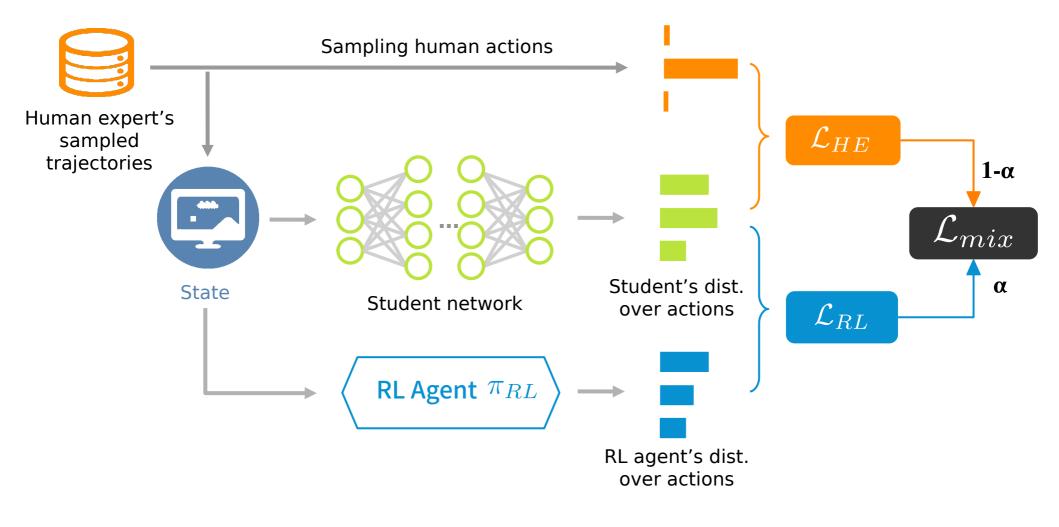
Imitation Learning method: Policy Distillation [Rusu et al., 2015]



同じ状態に対して, Teacher と生徒ネットワークそれぞれの出力の差を最小 し,生徒ネットワークは Teacher を模倣することができる

2019-07-18

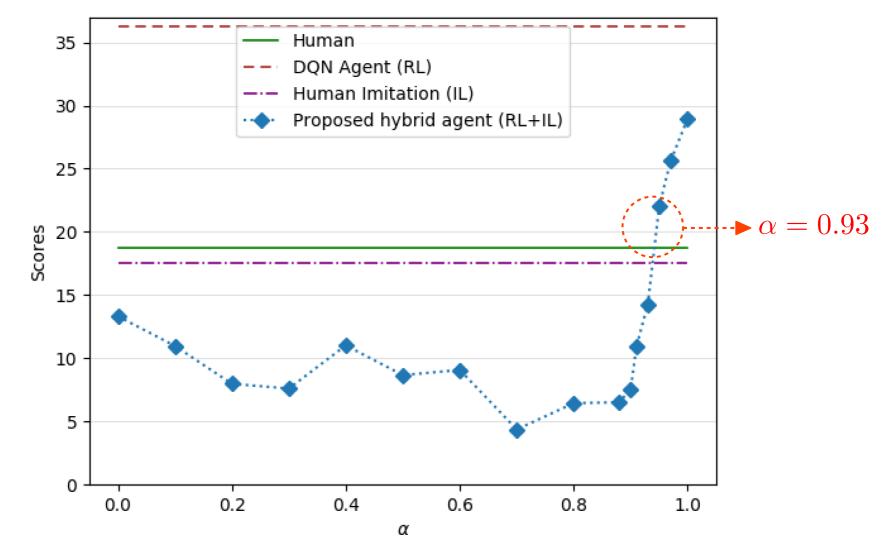
Proposed Hybrid Model



Based on "Policy Distillation", Rusu et al., 2015

2019-07-18

Apple game : Trade-off coefficient's impact on the hybrid agent



2019-07-18

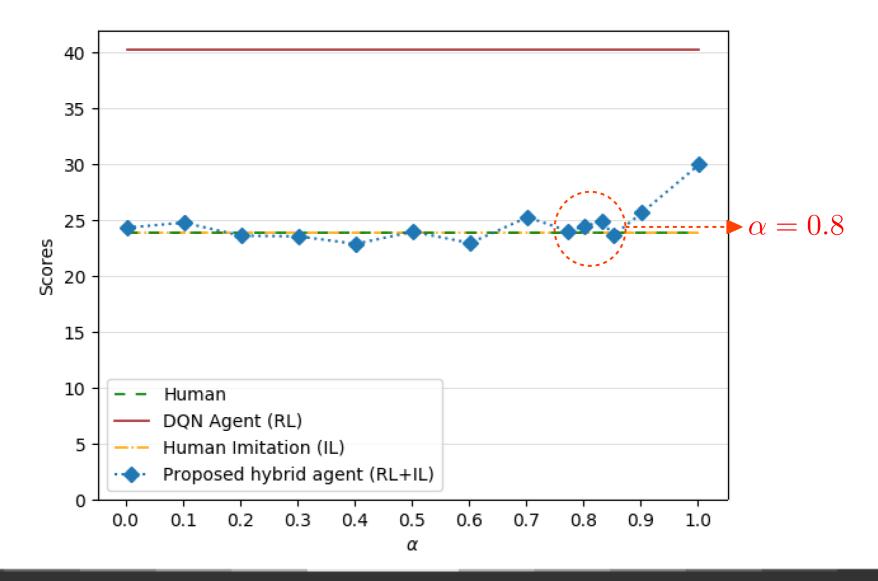
*1st and 2nd places in **bold** and <u>underlined</u> fonts, respectively.

Apple game : Performance and sensitivity evaluations

Agent	Score				Sensitivity test		
	Мах	Min	Mean	Std.	Identified as human		
Human expert	27	11	18.71	2.86	32 out of 50		
DQN(RL)	53	15	36.27	5.44	4 out of 50		
Behavior cloning (IL)	29	3	17.57	4.37	22 out of 50		
Proposed hybrid agent (RL+IL)	35	11	22.02	3.70	<u>27 out of 50</u>		
Score DQN > Hybrid agent > Human > Human Imitation							
Human-likeliness Human > Hybrid agent > Human Imitation > DQN							

2019-07-18

Gopher : Trade-off coefficient's impact on the hybrid agent



2019-07-18

*1st and 2nd places in **bold** and <u>underlined</u> fonts, respectively.

Apple game : Performance and sensitivity evaluations

Agent	Score				Sensitivity test		
	Мах	Min	Mean	Std.	Identified as human		
Human expert	81	2	23.87	19.81	<u>23 out of 52</u>		
DQN(RL)	246	0	40.30	36.81	17 out of 52		
Behavior cloning(IL)	126	0	23.91	23.79	31 out of 52		
Proposed hybrid agent (RL+IL)	138	0	<u>26.05</u>	24.31	31 out of 52		
Score DQN > Hybrid agent > Human Imitation > Human							
Human-likeliness Hybrid agent = Human Imitation > Human > DQN							

2019-07-18

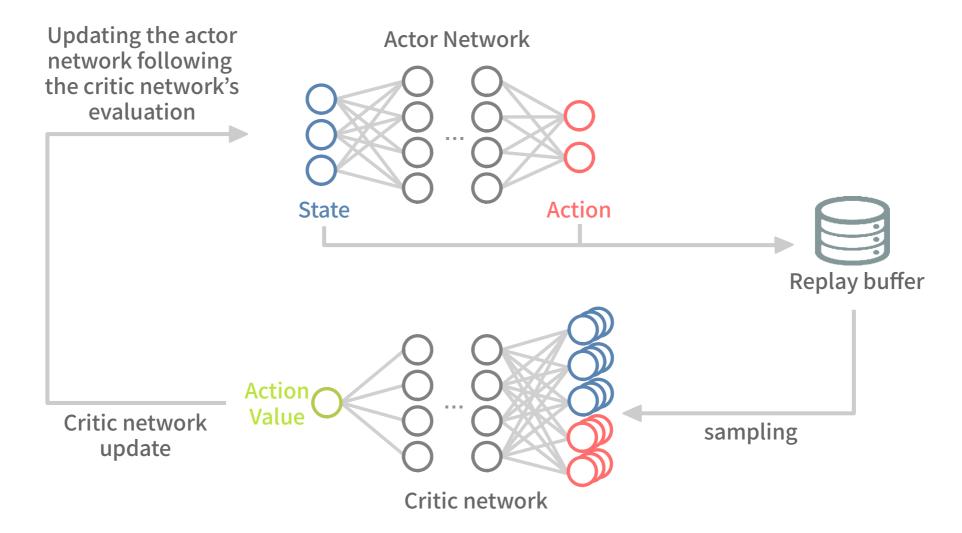
Continuous Action Space Task

TORCS Racing Car Simulator

Goal Drive a full lap while avoid obstacles and exiting the track

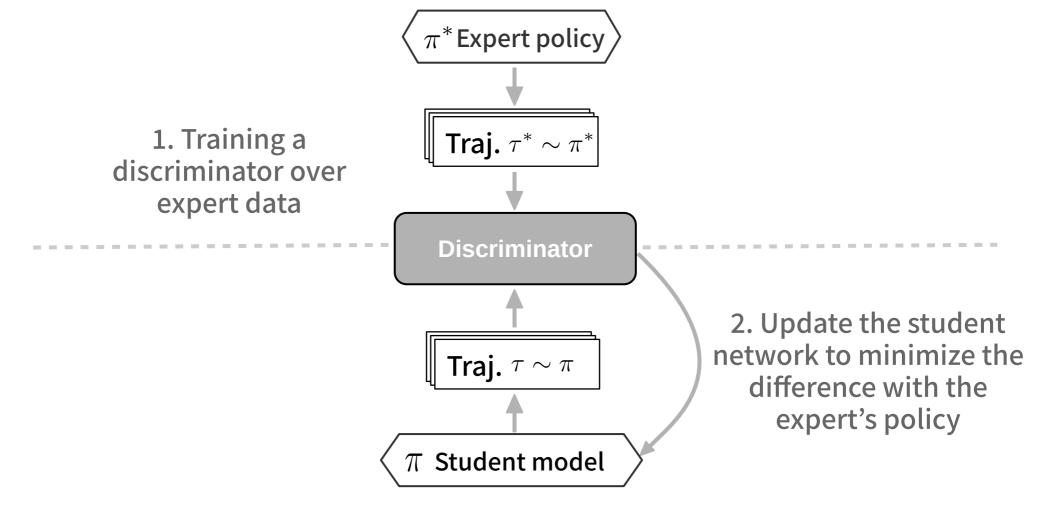
2019-07-18

As the RL Agent : Deep Deterministic Policy Gradients [Lillicrap et al., 2015]



2019-07-18

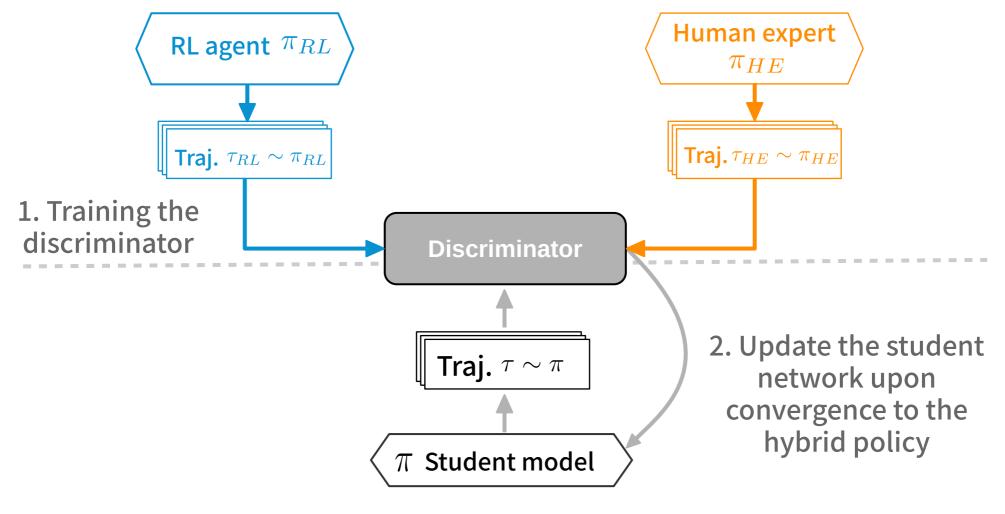
IL method : Generative Adversarial Imitation Learning [Ho et al., 2016]



Rousslan F. J. Dossa – Kobe University, Japan – IJCNN 2019

2019-07-18

Proposed Hybrid Model

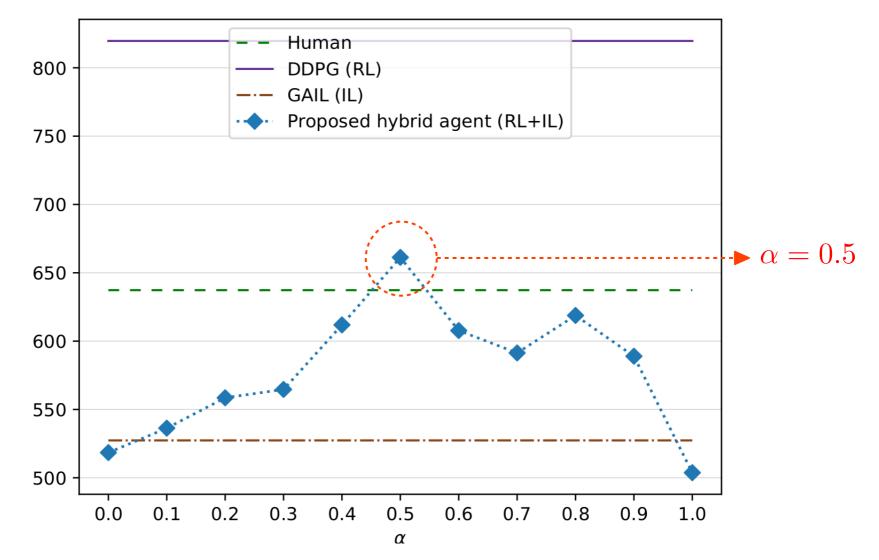


Based on "GAIL", Ho et al., 2015

2019-07-18

Result / Continuous Action Space case

Torcs : Trade-off coefficient's impact on the hybrid agent



2019-07-18

Result / Continuous Action Space case

*1st and 2nd places in **bold** and <u>underlined</u> fonts, respectively.

Torcs : Performance and sensitivity evaluations

モデル	Score				Sensitivity test
	Мах	Min	Mean	Std.	Identified as human
Human expert	696.7	588.6	637.2	31.1	26 out of 52
DDPG(RL)	823.4	818.8	819.6	0.5	17 out of 52
GAIL(IL)	608.8	23.4	527.3	72.4	<u>27 out of 52</u>
Proposed hybrid agent (RL+IL)	817.8	107.4	<u>661.2</u>	179.2	32 out of 52
Score DQN > Hybrid agent > Human > Human Imitation					
Human-likeliness Hybrid agent > Human Imitation > Human > DQN					

2019-07-18

Summary

- Proposed an hybrid of reinforcement and imitation learning
- Adapted the proposed hybrid method to both discrete and continuous action space tasks.
- Experimented said method on:
 - 2 discrete action task (Apple Game and Atari 2600's Gopher)
 - 1 continuous action task (Torcs Racing Car Simulator)
- The proposed hybrid agent
 - achieved similar, if not better performance than the human expert and its imitation
 - Was identified as more human likely than reinforcement learning counterpart.

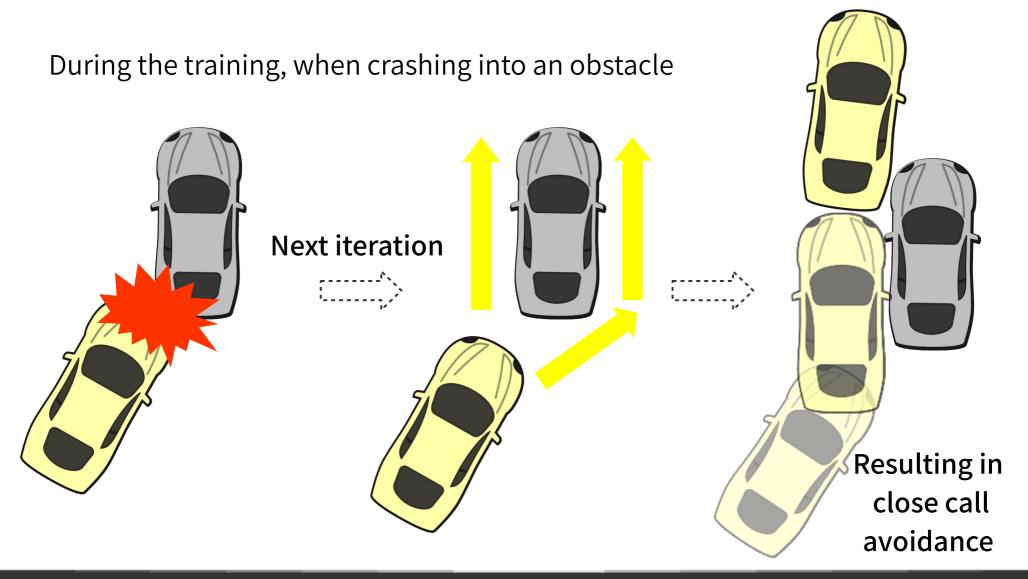
Appendix / Sensitivity test

Sensitivity test's details

- 26 participants
 - 23 males
 - 03 females
- Each participant
 - was first instructed on the different games as well as an opportunity to try by himself
 - then provided with 2 game play video of every agent (human RL agent human imitation – Proposed hybrid agent) for each game
 - and request to label each one of the video as either "human" or "AI".

Appendix / Causes of some undesirable RL agent's behaviors

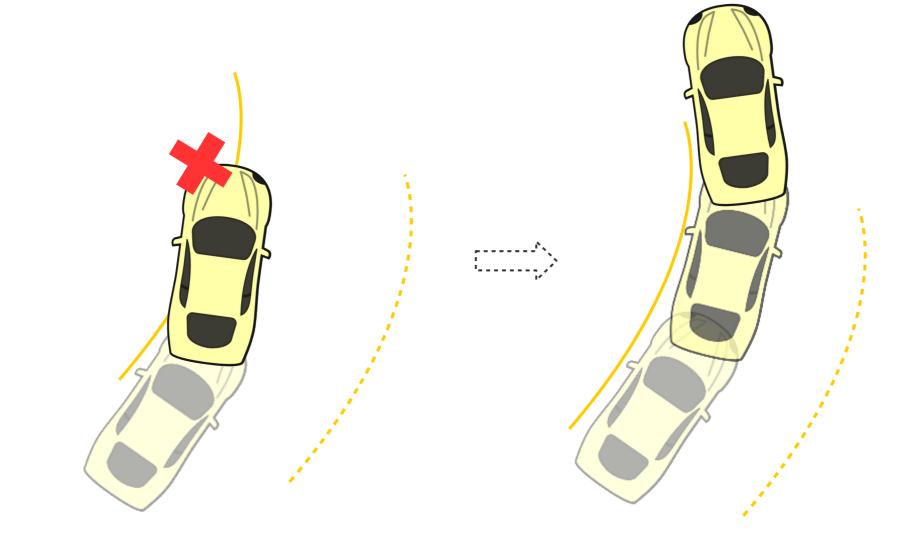
1. Close call avoidance



2019-07-18

Appendix / Causes of some undesirable RL agent's behaviors

1. Edge proximity



2019-07-18