Scale Invariant Recognition by Weight Shared CNNs in Parallel

Ryo Takahashi takahashi@ai.cs.kobe-u.ac.jp
Kobe University, Japan

Outline

► We introduce a novel scale invariant CNNs called "weight-shared multi-stage" network (WSMS-Net).

Scale invariance enables the CNNs to acquire higher performance of image classification.

- **▶** Introduction
- Our Method
- **Experimental Results**
- **▶** Future Works

- Introduction (CNN, Scale Invariance)
- Our Method
- Experimental Results
- **▶** Future Works

What is the CNN?

CNN (Convolutional Neural Network)

$$y_{ijk} = \sum_{m=0}^{L-1} \sum_{n=0}^{L-1} w_{mnk} x_{(i+m)(j+n)_k} + b_k$$

w: weight parameters of neural network

What is the Scale Invariance?

► The "scale invariance" means that the CNN can classify the scaled images correctly.

- Very deep CNNs of ResNet family achieved higher and higher accuracy on the image classification.
 - □ Examples of ResNet family CNNs
 - ResNet [He+, 2015]
 - Shortcut connection
 - Ultra deep CNNs -100 layers or more-
 - DenseNet [Zhuang+, 2016]
 - Densely connection of network
 - Ultra deep CNNs -100 layers or more-

Residual block

- Very deep CNNs of ResNet family achieved higher and higher accuracy on the image classification.
- ► However, deepening the network cannot achieve the scale invariance because of the using convolution.

▶ Receptive field of CNN does not cover the same area

► Receptive field of CNN does not cover the same area

- **▶** Introduction
- Our Method (WSMS-Net)
- Experimental Results
- **▶** Future Works

WSMS-Net for Scale Invariance

- WSMS-Net : Weight-shared multi-stage network
 - Multi-stage architecture for multi-scale feature acquiring
 - Weight-shared between multiple stages
 - Integration layer for selecting feature from multiple stages

overview

overview

- Introduction
- Our Method
- Experimental Results (graduation thesis)
- **▶** Future Works

Experimental Results -network-

▶ Basic architecture of WSMS-Net with 3 stages

Experimental Results -dataset-

Datasets

· CIFAR-10

10 classes color images

image size : 32 x 32 x 3

training data: 50,000 images

test data: 10,000 images

Experimental Results -accuracy-

Experimental Results -visualize-

only scaled images

WSMS-Net newly classify

CIFAR-10 images

- **▶** Introduction
- Our Method
- Experimental Results (new)
- **▶** Future Works

- Introduction
- Our Method
- Experimental Results (new)
 - generalization capability (model, dataset)
 - number of stages
 - weight sharing

- Introduction
- Our Method
- Experimental Results (new)
 - generalization capability (model, dataset)
 - number of stages
 - weight sharing

Experimental Results -model-

- DenseNet [Zhuang+, 2016]
 - Densely connection of network
 - Ultra deep CNNs -100 layers or more-

CIFAR-10 3.74%

- ResNet [He+, 2015]
 - Shortcut connection
 - Ultra deep CNNs -100 layers or more-

CIFAR-10 6.61%

- PreAct-ResNet [He+, 2016]
 - Improved version of ResNet

CIFAR-10 4.62%

Residual block

Experimental Results -dataset-

Datasets

- CIFAR-10 / CIFAR-100

10/100 classes color images

image size : 32 x 32 x 3

training data: 50,000 images

test data: 10,000 images

Experimental Results -dataset-

- Datasets
 - ImageNet

1000 classes color images

image size : 224 x 224 x 3

training data: 1.28 million images

test data: 50,000 images

Experimental Results generalization capability

Experimental Results generalization capability

Experimental Results generalization capability

- Introduction
- Our Method
- Experimental Results (new)
 - generalization capability (model, dataset)
 - number of stages
 - weight sharing

Experimental Results number of stages

- Optimization of number of stages
 - 2 stages on the CIFAR
 - 4 stages on the ImageNet

Experimental Results number of stages

ResNet + WSMS-Net

Index

- Introduction
- Our Method
- Experimental Results (new)
 - generalization capability (model, dataset)
 - number of stages
 - weight sharing

- ▶ The weight sharing really works? / is necessary?
 - evaluate by not weight shared network (MS-Net)

Index

- **▶** Introduction
- Our Method
- **Experimental Results**
- **▶** Future Works

number of stages

number of stages

enough parameters : good effect

not enough parameters : bad effect

weight sharing

number of stages

11M Experimental Results number of CIFAR-100 22.71 Error (%) 22.5 21.5 21 20.49 20.32 20.5 19.5 2 stages 3 stages 19.0 Pre-ResNet Pre-ResNet Pre-ResNet **WSMS-Net** WSMS-Net 41

enough parameters : good effect

not enough parameters : bad effect

Model Extension

Appendix

Conclusion

► WSMS-Net is scale-invariant, or at least robust to the scaling of object.

► WSMS-Net achieved the better performance than the Existing CNNs.

► Scale invariance is effective for better classification

What is the CNN?

□ Convolution

$$y_{ijk} = \sum_{m=0}^{L-1} \sum_{n=0}^{L-1} w_{mnk} x_{(i+m)(j+n)_k} + b_k$$

ijk: height, width, channel of image

Introduction

☐ Examples of scaled type images of CIFAR-10

popular

scaled

Introduction

□ Gradient vanishing problem

Deepening the layers results in the unreached of gradient information

Related works

- ☐ ResNet family CNNs we use
 - ► ResNet [He+,2015]
 - Shortcut connection
 - Ultra deep CNNs -100 layers or more-
 - DenseNet [Zhuang+,2016]
 - Densely connection of network
 - Ultra deep CNNs -100 layers or more-

overcome the gradient vanishing problem

Residual block

Related works

- ► PreAct-ResNet [He+,2016]
 - Different order of convolution, BatchNorm and ReLU

BN ReLU weight BN ReLU weight addition

original

PreAct-ResNet

Proposed method -network-

Basic architecture of WSMS-Net with 3 stages

Proposed method -integration layer-

□ We prepare 3 types of integration layers

Experimental Results -network-

WSMS-Net with ResNet

Experimental Results -network-

WSMS-Net with DenseNet

Experimental Results -network-

▶ WSMS-Net with ResNet for ImageNet

Experimental Results -classification accuracy-

- □ Detail results on the ImageNet with ResNet + WSMS-Net
- results for optimization of the number of stages

Network	depth	#params	top-1 Error(%)	top-5 Error(%)
ResNet	50	25.6M	24.01	7.02
WSMS-ResNet (3 stages, 1×1 conv)	51	28.3M	23.07	6.44
WSMS-ResNet (4 stages, 1×1 conv)	51	28.5M	23.13	6.57
ResNet	101	44.5M	22.44	6.21
WSMS-ResNet (3 stages, 1×1 conv)	102	47.3M	22.20	6.22
WSMS-ResNet (4 stages, 1×1 conv)	102	47.6M	22.09	6.06
ResNet	152	60.2M	22.16	6.16
WSMS-ResNet (3 stages, 1×1 conv)	153	63.0M	21.99	6.04
WSMS-ResNet (4 stages, 1×1 conv)	153	63.3M	21.93	5.90

What is the Scale Invariance?

► The "scale invariance" means that the neural network model can classify the scaled images correctly.

How the Scale Invariance?

▶ Multi-stage and sharing weights

Our Approach

Receptive field of CNN does not cover the same area

Experimental Results generalization capability

- WSMS-Net with DenseNet for CIFAR
 - 2 stages on the CIFAR
 - 2 / 4 stages on the ImageNet

- WSMS-Net with DenseNet for CIFAR
 - 2 stages on the CIFAR
 - 2 / 4 stages on the ImageNet

ResNet + WSMS-Net

- variations of Integration Layer (3 pattern)
 - use all feature maps from multiple stages (no conv)
 - · 3 x 3 convolution
 - 1 x 1 convolution

number of stages

number of stages

enough parameters : good effect

not enough parameters : bad effect

weight sharing

weight sharing

more parameters allow the model the more performance

