

ChartPointFlow for Topology-Aware 3D Point Cloud Generation

Takumi Kimura^{*}, Takashi Matsubara[†], and Kuniaki Uehara[‡] *Kobe University, [†]Osaka University, [‡]Osaka Gakuin University

kimura@ai.cs.kobe-u.ac.jp

Introduction

Background

- A point cloud is becoming popular because it can capture highresolution and is easier to manipulate.
- Point cloud generative model is useful for 3D computer vision tasks, such as shape completion, shape synthesis, and super-resolution.
- Most studies trained flow-based generative models to maximize the likelihood instead of a heuristic quality measurement of a generated point cloud.

Experiments

Generation and Reconstruction

- Dataset: ShapeNet. [Chang+, arXiv2015]
- Three categories: airplane, chair, and car. [Yang+, ICCV2019]

Unsupervised Segmentation

- Dataset: PartDataset. [Yi+, SIGGRAPH Asia2016]
- \succ Three categories: airplane, chair, and car.
- > divided into four parts.

Difficulties

- A flow-based generative model fails in expressing a point cloud that has a manifold-like structure because
- > a bijective map does not exist between a Euclidean space and a manifold with holes.
- > a point cloud is often composed of multiple subparts, some of which are disconnected.

Proposal

- We employed flow-based generative model using multiple latent labels, each of which is
- > assigned to a continuous subset of a given point cloud in unsupervised manner.
- \succ corresponding to a map, similarly to a chart of a manifold.
- A set of charts forms an atlas that covers the entire point cloud.

Results

Generation (1-NNA, closer to 50% is better)

ChartPointFlow outperformed other point cloud generators.

Model	Airplane	Chair	Car
I-GAN (EMD) [Achlioptas+, ICML2018]	85.68	65.56	68.32
PC-GAN [Li+, arXiv2018]	92.32	78.37	90.87
ShapeGF [Cai+, ECCV2020]	81.44	59.60	60.31
PointFlow [Yang+, ICCV2019]	75.06	59.89	62.36
SoftFlow [Kim+, NeurIPS2020]	69.44	63.51	64.71
ChartPointFlow (proposed)	65.08	58.31	58.68

Proposed Method

Architecture and data flow

 \bullet The chart predictor infers the label y that corresponds to the chart that the point x belongs to.

- **I** The point generator learns a set of maps, given the label as a condition.
- K The chart generator learns the posterior $p_K(y|s_X)$ of the label y for generation task.

Generation examples by ChartPointFlow (each color represents a chart).

Reconstruction

- State-of-the-art (see the manuscript for numerical performances).
- The large improvement in the chair category, especially compared to models using flows, namely PointFlow and SoftFlow.

Reconstruction examples by each model.

Unsupervised Segmentation (NMI / purity, larger is better) • ChartPointFlow outperformed AtlasNets for both criteria in all

Objective

• The evidence lower bound (ELBO)

 $\log p(X) \ge \mathbb{E}_{q_E(s_X|X)q_C(Y|X,s_X)} \left[\log \frac{p_F(X|Y,s_X)p(Y)p_G(s_X)}{q_C(Y|X,s_X)q_E(s_X|X)} \right]$ $= \mathbb{E}_{q_E(s_X|X)} \left[\sum_j \left\{ \mathbb{E}_{q_C(y_j|x_j,s_X)} \left[\log p_F(x_j|y_j,s_X) \right] \right\} \right]$ $+H[q_C(y_j|x_j,s_X)] - H[q_C(y_j|x_j,s_X)|p(y_j)]\Big\} - D_{KL}(q_E(s_X|X)||p_G(s_X))$ $=: \mathcal{L}_{ELBO}(F, C, E, G; X).$

• The regularization term to assign a map to a continuous subset $\mathcal{L}_{MI}(C; X, \mu, \lambda) \sum_{i} \left\{ \mu H \left[\frac{1}{|X|} \sum_{\tilde{x} \in Y} q_C(y_j | \tilde{x}) \right] - \lambda H[q_C(y_j | x_j)] \right\}.$ μ, λ : coefficient

• The final objective function to be maximized

 $\mathcal{L}(F, C, E, G, K; \mathcal{X}, \mu, \lambda) = \sum_{X \in \mathcal{X}} \left[\tilde{\mathcal{L}}_{\text{ELBO}} + \mathcal{L}_{MI} \right].$

categories, except for the purity of the airplane.

Model		Airpla	ne Chair	Car		
AtlasNet [Groueix+, CVPR2018]		0.22 /	0.76 0.23 / 0.74	0.11 / 0.71		
AtlasNet V2 (PD) [Deprelle, NeurIPS2019]		S2019] 0.25 / 0	0.79 0.24 / 0.75	5 0.13 / 0.72		
AtlasNet V2 (PT) [Deprelle, NeurIPS2019]		S2019] 0.27 /	0.80 0.24 / 0.74	0.17 / 0.73		
ChartPointFlow (proposed)		0.30 /	0.80 0.35 / 0.86	6 0.19 / 0.79		
Ground Truth	AtlasNet	AtlasNet V2 (PD)	AtlasNet V2 (PT)	ChartPointFlow		
Results of unsupervised segmentation.						