## Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model Takehiro Aoshima, Takashi Matsubara (Osaka University)

## Introduction

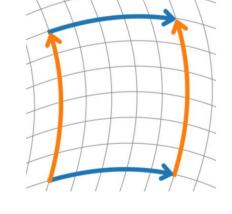
## Background

- Deep generative models are known for their ability to produce high-quality images.
- They do not provide an inherent way to edit images semantically.
- Several studies have proposed to find linear or nonlinear semantic paths in the latent space of pretrained models.

## **Related work**

#### Linear methods (e.g., [1])

- ✓ provide commutative edits.
- X fail to discover nonlinear semantic paths.


#### Nonlinear methods (e.g., [2]) 2 2 2 1 L 2 2 2 2 2 3 2

- ✓ discover nonlinear semantic paths.
- X do not provide commutative edits.

### Our solution

### The proposed method

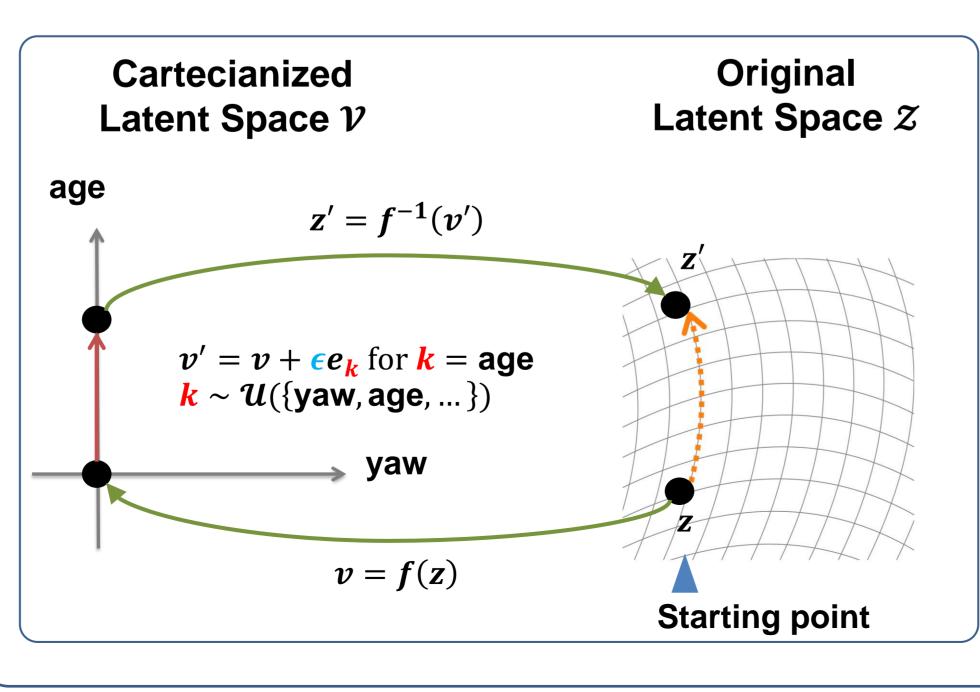
- ✓ discovers nonlinear
  - semantic paths.



なななななななな

ABBBBBBBB

A A A A A A A A A A A A A A A A


A 1 A A A A A A A

provides commutative edits.

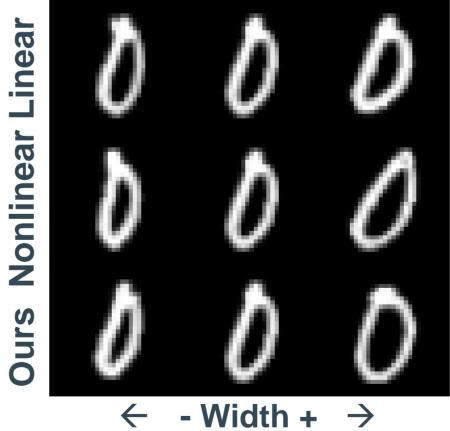
#### References

[1] Voynov and Babenko. "Unsupervised Discovery of Interpretable Directions in the GAN Latent Space." In: ICML 2020. [2] Tzelepis et al. "WarpedGANSpace: Finding Non-Linear RBF Paths in GAN Latent Space." In: ICCV 2021.

## **Deep Curvilinear Editing (DeCurvEd)**



## Method


• An N-dimensional latent space Z. • An *N*-dimensional Euclidean space  $\mathcal{V}$ (Cartecianized latent space). • A bijective function  $f: \mathbb{Z} \to \mathcal{V}$  to define a curvilinear coordinate on Z by transforming a Cartesian coordinate on  $\mathcal{V}$ . • Edit a latent code z as 1.Get a mapped latent code v = f(z). 2.Edit the mapped latent code  $v' = v + \epsilon e_k$ . 3.Get an edited latent code  $z' = f^{-1}(v')$ . • This edit is nonlinear and commutative because curvilinear coordinates are equivalent to commuting vector fields. • We name the proposed method Deep Curvilinear Editing (DeCurvEd). • DeCurvEd is available for any generative models.

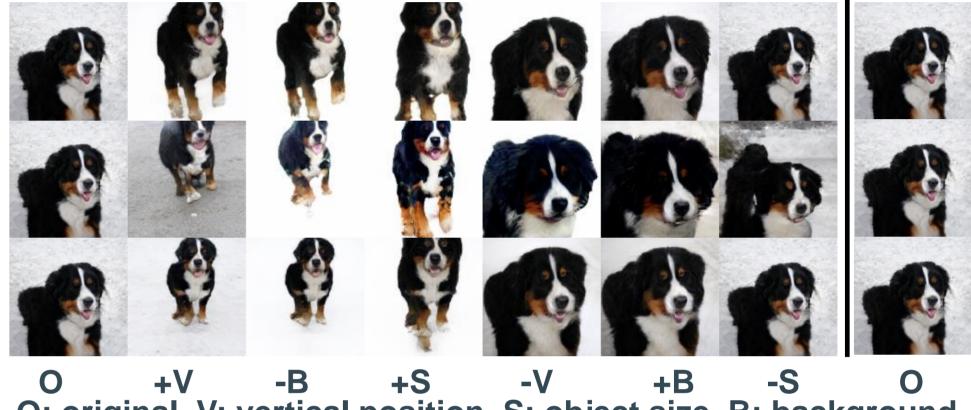
## Commutativity

- Linear method is commutative, but the quality is inferior.
- Nonlinear method offers a better quality, but it is non-commutative.
- Ours method is commutative and offers the best quality.



**Visualization results** 




**MNIST + SNGAN** Identity error

- the disentanglement.



# **Experimental Results**

O: original, D: dark colored-hair, L: hair length. SNGAN + AnimeFaces.



O: original, V: vertical position, S: object size, B: background. **BigGAN + ILSVRC.** 

Linear and nonlinear methods exhibit undesirable side effects (e.g., age affects face color). Ours edits images without severe side effects.



 $\leftarrow$  - Object size +  $\rightarrow$ ILSVRC + BigGAN





CelebA

| Age + →<br>Q + StyleG | ← -Color + →<br>LSUN Car + StyleGAN2 |      |      |      |      |      |      |
|-----------------------|--------------------------------------|------|------|------|------|------|------|
| Q T OLYIEC            | A                                    | G    | R    |      |      |      | Avg. |
| Linear                | 26.1                                 | 5.5  | 19.1 | 47.4 | 26.4 | 24.7 | 29.9 |
| Nonlinear             | 27.6                                 | 56.2 | 33.6 | 6.3  | 14.6 | 8.4  | 29.3 |
| Ours                  | 21.1                                 | 15.4 | 25.3 | 6.0  | 18.9 | 9.6  | 19.2 |

• We calculate identity error to evaluate

 Ours has the lowest error for two out of six attributes. the second lowest errors for the remaining.