ハイパーネットによる 畳み込みニューラルネットワークの暗黙的事後分布推定

○鵜飼健矢・松原 崇・上原邦昭(神戸大)

Outline

- We introduce a novel regularization method for large CNNs
 - This estimates the **posterior** of the parameters **implicitly** by **hypernetworks**.
- By estimating the posteriors,
 - ✓ Probabilistic behavior of the parameters regularizes the training.
 - ✓ We can perform **model averaging** in the inference phase.
- In the experiment, our method improved image classification accuracy.

Background : Regularization

- Deep neural networks have a rich ability to learn complex representations.
- However, they are prone to overfitting due to the limited number of training samples.

Regularizing the learning process of neural networks is essential.

Background : Parameter Estimation

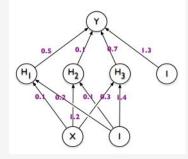
In bayesian statistics,

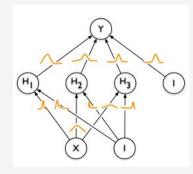
regularization and parameter estimation is deeply connected.

- Training of Typical Probabilistic Models :
 - estimate the value of the Parameters
 - MLE, MAP estimation

 $\mathbf{w}^{\text{MLE}} = \arg \max_{\mathbf{w}} \log P(\mathcal{D}|\mathbf{w})$ = $\arg \max_{\mathbf{w}} \sum_{i} \log P(\mathbf{y}_{i}|\mathbf{x}_{i}, \mathbf{w}).$ $\mathbf{w}^{\text{MAP}} = \arg \max_{\mathbf{w}} \log P(\mathbf{w}|\mathcal{D})$ = $\arg \max_{\mathbf{w}} \log P(\mathcal{D}|\mathbf{w}) + \log P(\mathbf{w}).$

- Bayesian Probabilistic Models:
 - estimate the **posterior distribution** of the parameters
 - Able to treat uncertainty
 - Able to perform bayesian model averaging

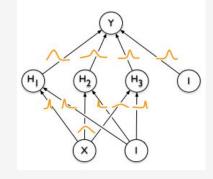




Related works : Bayesian Neural Nets

- Typical training: minimize Kullback-Leibler divergence between
 - **P(w/D)**: true posterior
 - *q(w/θ)*: approximation posterior

 $\begin{aligned} \theta^{\star} &= \arg\min_{\theta} \mathrm{KL}[q(\mathbf{w}|\theta)||P(\mathbf{w}|\mathcal{D})] \\ &= \arg\min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})P(\mathcal{D}|\mathbf{w})} \mathrm{d}\mathbf{w} \\ &= \arg\min_{\theta} \mathrm{KL}\left[q(\mathbf{w}|\theta) \mid\mid P(\mathbf{w})\right] - \mathbb{E}_{q(\mathbf{w}|\theta)}\left[\log P(\mathcal{D}|\mathbf{w})\right]. \end{aligned}$

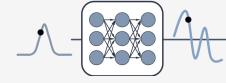


- Bayes by backprop [Blundell et al, 2015]
 - Factorized Gaussian prior **P(w)** & posterior **q(w/θ)**
 - All the parameters are assumed to be **independent**

Related works : Bayesian Neural Nets

- Typical training: minimize Kullback-Leibler divergence between
 - **P(w/D)**: true posterior
 - *q(w/θ)*: approximation posterior

$$\begin{split} \theta^{\star} &= \arg\min_{\theta} \mathrm{KL}[q(\mathbf{w}|\theta)||P(\mathbf{w}|\mathcal{D})] \\ &= \arg\min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})P(\mathcal{D}|\mathbf{w})} \mathrm{d}\mathbf{w} \\ &= \arg\min_{\theta} \mathrm{KL}\left[q(\mathbf{w}|\theta) \mid\mid P(\mathbf{w})\right] - \mathbb{E}_{q(\mathbf{w}|\theta)}\left[\log P(\mathcal{D}|\mathbf{w})\right]. \end{split}$$



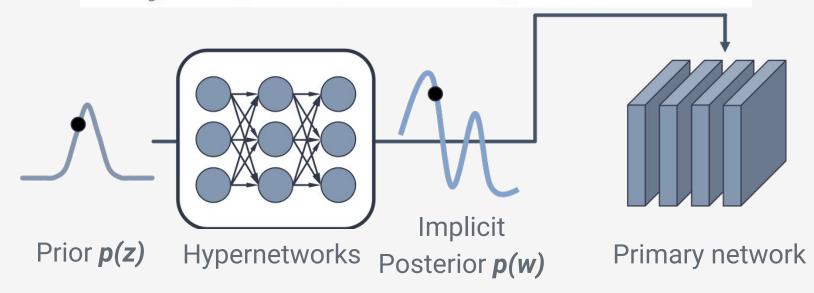
- Bayesian hypernetworks [Krueger et al, 2017]
 - Flexible **correlated** posterior $q(w|\theta)$ by hypernetworks
 - Problems for large scale CNNs because of the special-structured hypernetworks and Weight Normalization

Hypernetwork-based Posterior estimation of large scale CNNs is not accomplished.

Our Methods

- Approximate the implicit posterior by hypernetworks
- Simply maximize the target likelihood directly to relax the restriction of the hypernetworks

$$\underset{\theta}{\operatorname{arg\,min\,}\mathsf{KL}\,[q(\mathbf{w}|\theta) \mid\mid P(\mathbf{w})]} - \mathbb{E}_{q(\mathbf{w}|\theta)}\left[\log P(\mathcal{D}|\mathbf{w})\right].$$



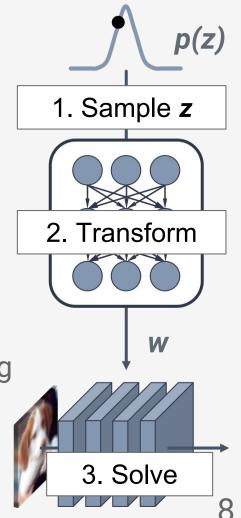
Our Methods

Procedure

- 1. Sample *z* from prior *p(z)*
- 2. Transform z by hypernet $w = g(z; \theta)$
- 3. Solve the task with the parameter **w**
- 4. Update *θ* by backpropagation

By using our methods,

- Probabilistic behavior regularizes the training
- ✓ Able to perform model averaging
- ✓ Able to apply large scale CNNs



Experimental Results - Settings

- We demonstrate the regularization effects by classification accuracy
- We examined
 - Effect of the prior p(z)
 - Learned posterior of the parameters
- We evaluated the methods using
 - Networks: WideResNet, ResNeXT, Pyramidal ResNet
 - Datasets: CIFAR10, SVHN, Imagenet

Classification Errors - CIFAR10

Methods	WideRes	Net 28-4	WideResNet 28-10		
	x1	x16	x1	x16	
MLE (No weight decay)	6.05%		5.49%		
MAP estimation (Weight decay)	4.23%		3.90%		
Ours Posterior estimation	4.21%	4.19%	3.76%	3.73%	

Our method **improved** image classification accuracy.

Classification Errors - CIFAR10

Methods	ResNeXT 29-8-64d		Pyramidal ResNet 110-48	
	x1	x16	x1	x16
MAP estimation (Weight decay)	4.03%		4.59%	
Ours Posterior estimation	3.92%	3.91%	4.64%	4.61%

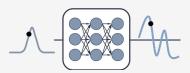
Our method is applicable to large scale & redundant structure

such as WideResNet, ResNeXT

Effect of the prior p(z) - CIFAR10

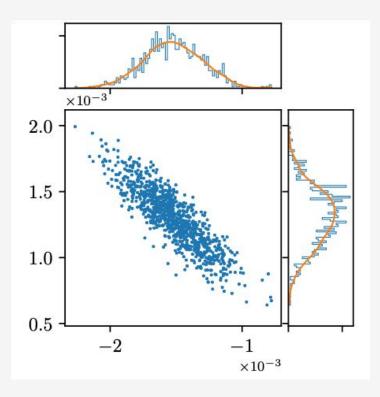
We compared classification errors with various p(z)

- \circ U(0, 1) : better regularization at x1
- N(0, 1) : model averaging is effective



Methods	p(z)	WideResNet 28-4		
		x1	x16	
MAP estimation (Weight decay)		4.23%		
Ours Posterior estimation	U(0, 1)	4.21%	4.19%	
	N(0, 1)	4.65%	4.06%	

Learned Posteriors



Samples of randomly chosen two parameters

- Two parameters are **correlated**.
- Complicated posterior

We also examined the effectiveness of correlation in detail in the paper.

Conclusion

- We introduced a novel regularization method for large CNNs
 - This estimates the **posterior** of the parameters **implicitly** by **hypernetworks**.
- By estimating the posteriors,
 - Probabilistic behavior of the parameters regularizes the training.
 - ✓ We can perform **model averaging** in the inference phase.
- In the experiment, our method improved image classification accuracy.

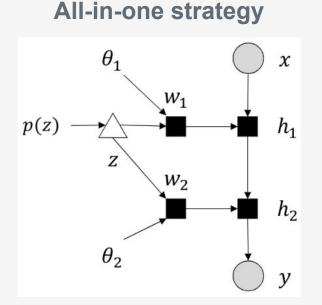
Appendix

Classification Errors - Strategies and Priors

Methods Strategy	prior	WideResNet 28-4		WideResNet 28-10		
		x1	x16	x1	x16	
MLE			6.05%		5.49%	
MAP			4.23%		3.90%	
all-	all-in-one	N(0, 1)	4.65%	4.06%	4.13%	3.79%
byparaet	all-in-one	U(0, 1)	4.21%	4.19%	3.76%	3.73%
hypernet	block-wise	N(0, 1)	4.70%	4.03%	4.42%	3.85%
	block-wise	U(0, 1)	4.34%	4.34%	4.02%	3.97%

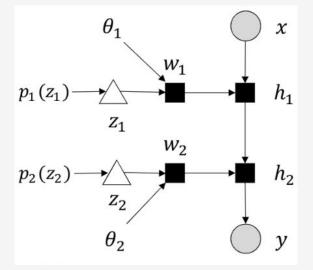
Correlation of the posteriors

We compared two models to examine the effect of correlation



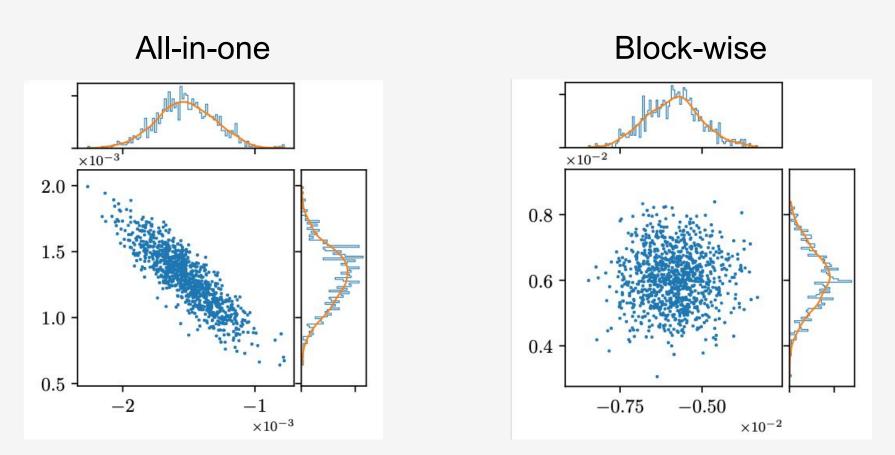
Share prior among all layers

Block-wise strategy



Share prior within each ResBlock

Difference of Correlation



Samples of two parameters randomly chosen from different ResBlocks. 18

Classification Accuracy - Prior p(z)

prior $p(z)$	$\times 1$	$\times 16$
$\mathcal{U}(0,1)$	4.21%	4.19%
$\mathcal{U}(-1,1)$	4.74%	4.22%
$\mathcal{N}(0,1)$	4.65%	4.06%
$ \mathcal{N}(0,1) $	4.64%	4.58%

Classification Accuracy - SVHN & ImageNet

Table 5: Test error rates on SVHN for WideResNet16-4.

Methods	prior $p(z)$	$\times 1$	$\times 16$
MAP		1.90%	
hypernetwork	$egin{array}{lll} \mathcal{U}(0,1) \ \mathcal{N}(0,1) \end{array}$	$1.93\%\ 1.90\%$	1.93% 1.80%

Table 6: Test error rates on ImageNet for ResNet50 with the prior of U(0, 1).

	Top 1		Top 5	
Methods	$\times 1$	$\times 16$	$\times 1$	$\times 16$
MAP	23.84%		7.06%	100
hypernetwork	25.97%	25.87%	8.17%	8.16%

Classification Accuracy - Various CNNs

	Pyramidal ResNet-110-48		ResNeXt-29-8-64	
Methods	$\times 1$	$\times 16$	$\times 1$	$\times 16$
MAP	4.59%		4.03%	
hypernetwork	4.64%	4.61%	$\mathbf{3.92\%}$	3.91%

Works better with ResNeXT not better with Pyramidal ResNet

